
IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 1

Generating Robust DNN with Resistance to
Bit-Flip based Adversarial Weight Attack

Liang Liu, Yanan Guo, Yueqiang Cheng,Youtao Zhang, Jun Yang

Abstract—Rowhammer Attack, a new DRAM-based attack, was developed exploiting weak cells to alter their content. Such attacks
can be launched at the user level without requiring access permission to the victim memory cells. Leveraging such attacks, a new
bit-flip-based adversarial weights attack (BFA) was developed targeting deep neural network models. When BFA attackers acquire a
DNN model, they manipulate the existing DNN adversarial attack into locating vulnerable bits in the target DNN model. By flipping a
subset of them using Rowhammer, they can crash that model within 30 trails. In this paper, we propose a lightweight and
easy-to-deploy defense mechanism in the bit-level, Randomized Rotated and Nonlinear Encoding (RREC), which generates both
robustness and fault-tolerant against BFA. Since flipping the most significant bit (MSB) in quantized data is too dangerous, we
introduce randomized Rotation to obfuscate the bit order of model data and efficiently hide truly vulnerable bits with less vulnerable
ones.Further, RREC reduces the average bit-flipped distance by more than 3x from the nonlinear encoding. It decreases the bit-flip
distance among the majority of bits (including those vulnerable bits). Theoretically, RREC minimized the impact of a single bit BFA to
1/24 compared with baseline. Experimentally, RREC tolerates more than 17x flipped bits vs. baseline model and 4.8x and 5.7x more
bits compared with the existing BFA defenses (4B QAT and WR) with 0.01x to 0.08x of runtime latency. Moreover, we evaluate RREC
against a newly emerged attack, Targeted-BFA, and it improves the defense rate from 5% to 95%.

Index Terms—Machine Learning, RowHammer, Bit-Flip Attack

F

1 INTRODUCTION

As the demand of AI grows, more enterprises start to develop their
proprietary of AI models. Although the capabilities of AI bring
tremendous convenience to society, their intensive computational
demands especially in model training are also limited by comput-
ing resources. As a result, Machine learning as a service (MLaaS)
gradually becomes a popular practice, where users can leverage
cloud-based machine learning tools rather than developing their in-
house hardware or software infrastructure. As the computational
or memory resource of the online server is expensive, using high-
precision weights in DNN inference consumes a large amount of
memory bandwidth. Many studies [1] have shown that using high-
precision weights for inference unnecessarily lowers the inference
efficiency, and proposed that using a compacted format such as
8-bit quantization could achieve the same accuracy as the full
precision version. Users should also be cautious about the potential
security threats, because the more compacted of data is encoded,
the higher of risk of important bit being fault injected. Further,
cloud servers typically share hardware devices among multiple
users to maximize resource utilization. However, such sharing is
still subject to security attacks that cannot be handled by existing
security protection [2]. In this paper, we will discuss one such
hardware threat from DRAM sharing.

Rowhammer [3] exploits vulnerabilities in DRAM cells and
causes leaking or changing of the contents in nearby memory

• Liang Liu, Yanan Guo, and Jun yang are with the Department of Electrical
and Computer Engineering, University of Pittsburgh, Pittsburgh, PA,
15213. E-mail: {lil125,yag45, juy9}@pitt.edu

• Youtao Zhang is with the Department of Computer science, University of
Pittsburgh, Pittsburgh, PA, 15213. E-mail: zhangyt@cs.pitt.edu

• Yueqiang Cheng is with Security Research Department at NIO Company.E-
mail: strongerwill@gmail.com

rows, where those rows are not addressed in the original memory
access. Such attacks is hidden from the operating system and
bypass permission checks at various levels. By manipulating
Rowhammer, researchers developed a Bit-Flip based version of
adversarial attack(BFA) targeting the DNN model, where adver-
sarial attack [4] has been a secure hazard fulfilling the whole age
of AI. BFA attackers use the algorithm of adversarial attack to
compute the location of vulnerable bits and use rowhammer to flip
them. Previous study [5], [6] showed that such bit-wise adversarial
attack on a naı̈ve DNN model can be as harmful as the traditional
adversarial attack, where the result shows that flipping around 20
bits can cause a catastrophe to the entire model.

Three main categories of techniques can mitigate BFA, but
each of them still has some adverse effects. Firstly, some studies
tried to solve the Rowhammer problem at the hardware level [7],
[8]. Researchers systemically implement the timer [9], [10], per-
formance counters [11]–[13] or memory scanners [11] to monitor
the system behaviors and cease the application when abnormal
events are detected. However, the above defenses require specific
hardware upgrading in either the DRAM or memory controller in
the CPU, which poses challenges to deployed infrastructure.

Secondly, there also exist some the data-level defenses such as
error detection and correction. However, the integrity check, e.g.,
checksum or Merkle-Tree [14], can only capture the errors but
cannot correct them. Even a small error is detected, it deletes the
entire data block and reloads them from the disk. Attackers can
use Rowhammer to continually trigger the error and forces the user
to spend tremendous time in I/O, which is equivalent to a DDoS
attack [15] that can crash the server. On the other hand, Error
Correction Code (ECC) introduces redundant bits to generate the
data fault-tolerant, e.g., the Chipkill-Correct ECC [16]. However,
generating multiple-bit correction is expensive. The previous study
[17] shows that Rowhammer can attack more than one bit in a row

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 2

Cat Dog(.)

MLaaS
Benign DNN model

Rowhammer Attacker

Cat Cat(.)

RREC Protected model

Bit-wise Vulnerability Increases

MSB

Unknown Vulnerability

Nonlinearly Encoded MSB

Fig. 1. RREC Protects MLaaS Model in Bit-Level. The benign model
is easily combated by flipping the MSB, since they are always located at the
left-most. RREC protects the model and rotates data in bits level. By applying
the randomization in bits, attackers are impossible to locate the MSB. Further,
RREC integrates nonlinear encoding to minimize the impact of single bit being
flipped. Even if a MSB is accidentally flipped, its impact is still tolerable.

and bypass ECC, and more studies [8] show that Rowhammer is
able to compromise Chipkill ECC.

Thirdly, there are works proposed to generate the reliability of
the model. For example, Soft Error Resilience [18] triplicates the
model weights into three copies and corrects the random bit flip
by the majority vote; AEP [19] records the location of error bits
and uses the mask to ignore those bits. However, improving the
reliability only works for defending the random errors, but it can-
not defend the white-box BFA since attackers also attack the most
vulnerable bits. We also investigate the specific defenses against
BFA to the model such as Binarization-Aware-Training model [20]
or Weight Reconstruction [21]. They provide preliminary solutions
to mitigate BFA, but the protection is still limited. QAT achieves
promising robustness when using 1 bit binary weights (1B QAT),
but the binary coding compromises too much accuracy (dropping
from 92% to 86% for ResNet). If choosing 4-bit quantization
mode (4B QAT), attackers can flip more bits (over 100 bits), and
their model will still fail. Our Proposed RREC can achieve the
same robustness as 1B QAT without compromising any accuracy.

Our proposal is based on the observation that Rowhammer
alters the charge in a cell will increase the difficulty of altering
other cells in the same row. BFA attackers tend to target the higher
significant bits to flip because those bits contribute more difference
to the benign data. Some existing obfuscation techniques, e.g.,
memory encryption (AES counter mode), encrypts the counter
into a padding block and XORs the block padding with the plain
text to get cipher text. It does not change the location of the MSB,
so Attackers can still locate the MSB to flip. In this paper, we

propose two bit-level defenses that hide the vulnerability at the
bit level and spread the risk of higher significant bits into less
significant ones.

Our first approach is inspired by the randomization method,
e.g., Address space layout randomization (ASLR) [22]. It shuffles
the memory address into a random order, preventing memory
corruption exploitation. Unlike ASLR applying the randomization
at the page level, we protect data at the bit level. In this paper, we
found the lightest implementation of randomization, a randomized
rotation, that hides the order of bits and turns a potential white-box
BFA into a black-box attack, where the effectiveness would drop
to 1/8.

Further, we integrate another bit-level defense above the ran-
domized model to minimize the flipped bits’ average distance.
Before we started our implementation, we studied the robustness
of existing quantization methods in defending BFA, such as
clipping/pruning [23], nonlinear quantization [24], and dynamic
quantization [25]. We observe that the nonlinear quantization
method can reduce the distance of bits being flipped, and the
experiments show an outstanding performance in defending BFA.
Therefore, we enhance the inherent attribute of nonlinear quan-
tization and develop a post-quantization-training mechanism to
solve the optimal setting of nonlinear function to defend BFA.
We achieve 3x of robustness gain through the optimized nonlinear
encoding.

In summary, we generate robustness and fault-tolerance in
the model, where although a proportion of model weights are
comprised, the model still performs functionally. Experiments
show that in defending the white-box attack, even if 100 bits were
compromised, the accuracy is still above 70%, and in defending
the black-box attack, the accuracy is still above 80% after 1000
bits are flipped. Compared with the previous BFA defense, RREC
achieves 4.8x more robust VS. the 4B QAT and 5.7x more robust
VS. weight reconstruction. We achieve the same robustness as 1B
QAT. However, instead of 1B QAT suffering from an accuracy
loss (6% to 7%), RREC enhances the accuracy of the original
model, i.e., the accuracy of the VGG model grows from 87.7%
to 88.8%, which outperforms the 1B QAT model vastly. Further,
we evaluate the overhead of this defense, where the encoding only
takes small proportions of computational overhead compared with
the model inference overhead (from 0.01x to 0.08x). Moreover,
RREC protects the model only at the bit-level, and it is orthogonal
to the aforementioned model-level defenses such as AT or RS.
They can work collectively to achieve better robustness. We can
achieve even better performance by applying the QAT method.

2 BACKGROUND

2.1 Rowhammer Attack
Modern DRAM-based memory chips consist of a two-dimensional
array of cells. Each cell stores 1-bit information, represented by
the charge of the capacitor in the cell. Though simple, such a
structure was found to be vulnerable to disturbance errors induced
by coupling [3]. That coupling effect activates a row in a DRAM
bank and causes a little disturbance to its neighboring rows. With
frequent activation/access to the same row (a row commonly stores
8k data), the disturbance on the neighboring rows will accumulate
and eventually become significant enough to flip the stored bits
before the rows get refreshed. With Rowhammer, attackers are able
to change the memory data of a co-located application without
even accessing it directly.

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 3

Rowhammer has already been successfully utilized to demon-
strate many attacks [26], [27]. It has been proven that Rowhammer
attacks can work on both DDR3 and DDR4 memories, even with
Error-correcting codes (ECC memory) [28]. In [29], the authors
show that Rowhammer attacks can be used to modify the weights
of a functional DNN and make it generate random outputs.

2.2 Model Quantization
The model quantization [30] is to substitute model weights or in-
termediate results in memory from 32-bit float point into lower bits
(e.g., 8 bits) of unsigned integer, which can reduce the overhead of
intensive memory fetching. Previous studies show that 8-bit quan-
tized models achieve nearly the same accuracy as the full-precision
ones, with specific training strategies such as Quantization-Aware-
Training(QAT) and Post-Training-Quantization (PTQ) [31].

Moreover, the floating point is highly prone to the bit-flip
attack since the standard float point consists of an 8-bit exponent.
For example, once the highest exponent bit is flipped from 0 to 1,
the data will be amplified by 2256 times, which is a catastrophe to
the model. The experiment shows that even 1 bit of flipping the
exponent can crash a DNN model, so float point is not a preferred
option if the threat model is prone to the BFA.

According to the different encoding methods, we can catechize
the quantization into linear quantization and non-linear quantiza-
tion. Let us use W to denote the full-precision float-point weights
and B to denote the quantized weights. The linear quantization
function Ql is written as:

Ql(W) =
bW e
∆w

, Q−1l (B) = ∆w ·B

where b·e is a round operation, and it drops the precision;
∆w denotes the quantization scale (also noted as quantization
precision) of the corresponding layer, which is calculated as
∆w = max(Wl)/128. Further, we can also express the integer
weights via its bit-wise representation B = {b1, b2, · · · , b7},
to formalize quantized weights. The widest used quantization
function is the signed linear encoding:

B = −128 · b7 +
6∑

n=0

2nbn

Besides the linear quantization, recent studies explore more
attempts on modifying the quantization function to improve pre-
cision or performance: 1. some works [23] apply the pruning and
clipping to narrow down the quantization range, i.e. decrease the
δw. it use the same quantization level to represent a smaller
domain, which equally increase the precision; 2. more works
dynamically manage the quantization length [25], i.e. adjust the
quantization function Q(·) and δw during training or inferring. It
reduces the quantization bits for nonessential layer; 3, other works
analysis the data distribution, and abandon the linear quantization
function and apply nonlinear quantizer [24] to assign more pre-
cision to the majority of weights. For example, in this paper, we
integrate a power function into our encoding:

Q−1nl (B) = sign(B) ·∆w · ((|B|+ α)γ − αγ)

,where we choose α as the integer power term. According to the
property of power function, the growing speed will be relative
slow when the base B in is small. Empirically, the weights in
DNN model are densely distributed at the close-to-zero zone,
so the power function brings more precision to the majority of

weights. In the design section, we will elaborate the detail of the
implementation and its robustness gain.

2.3 Bit-Flip-Based Adversarial Weights Attacks

Adversarial attacks have become one of the main challenges in
DNN security [32], [33]. Due to the nature of DNN, even small
changes in inputs or weights could lead to huge differences in
inference accuracy. General adversarial weight attacks maximize
the effect of the attack by locating the weights with the highest
gradients w.r.t the inference loss `. After applying a small shift in
such identified weights, there will be a significant change in the
loss. Projected Gradient Descend(PGD) and Fast Gradient Sign
Method(FGSM) [34] are commonly use by attackers.
Bit-Flip Attack: Bit Flip Attack (BFA) [6], [35] is a variant of
adversarial weights attacks. This attack performs weight modifi-
cation by flipping the bits of quantized DNN weights stored in the
memory, utilizing well-developed Rowhammer tools. The main
goal of BFA is to flip the optimal combination of bits in weights
of a DNN model to maximize its inference loss.

As the majority of MLaaS are tightly restricted by the com-
putation resource, model quantization compresss a DNN model
and representing the model with lower memory bandwidth. BFA
algorithm is based on the logic behind quantization. BFA shares a
similar idea as the adversarial weight attack: to maximally increase
the loss with a small shift in weights. The difference is that BFA
shifts the weights by flipping their bits. The loss function is written
as follow:

L1 = `(f(x,B′),y)− ` (f(x,B),y)

s.t. H(B′ −B) < Nε

where Nε ∈ N is a constant of Hamming distance that is limited
for bit-flipping by such attack. Attackers solve this loss function
and locate the bits with maximum gradient to flip. The goal is to
increase the model’s overall loss and finally crash the model.
Targeted Bit Flip Attack [6]: To attack only a few classes of
model {xs,ys}, and fool the model to mis-classify it to {xt,yt}.
It will not change the overall accuracy. The loss function can be
written as follow:

L2 = max(f(xs,B
′
s))−max(f(xs,B

′
t))

+ λ · `(f(xn,B
′
n),yn))

where the max(f(·)) outputs the class with the highest confi-
dence; B′s and B′t are the weights of the last-layer linking to the
source and the target class; xn = {x \ xs, xt} are the class other
than the source and target. The first term tend to enhance the target
class and vanish the source class on all input x. The second term is
to train the rest classes of the model to maintain the same accuracy.
Targeted-BFA crashes the model by mis-classifying all the source
input to target class: xs → yt.

For both attacks, they can identify a set of vulnerable bits bv
by selecting the bits with their gradient larger than a certain thresh-
old. However, not all of bits with larger gradient are necessary
vulnerable. Both BFA and Targeted-BFA solve the loss function by
the gradient-decent based optimizer, and it puts inaccuracy when
the loss function is not convex. Attackers might select a lower
threshold and spend more trails to achieve a promising success
rate.

BFA is a severe security threat with these two attributes: 1,
with mature Rowhammer tools, a BFA attacker is able to modify
the DNN weights stored in the memory even without the write

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 4

permission to the weights; 2, Even flipping only a small number
of bits can turn a functional DNN model into a random result
generator. Thus, to build a secure and robust DNN model, we
must have an effective defense mechanism against BFA, especially
when using MLaaS platforms.

2.4 Threat Model
In MLaaS, users upload their DNN models to a potentially in-risk
platform for more computational resources. The DNN inference
and other applications (potentially controlled by the attacker)
might co-run on the server and thus share some server hardware
such as the last-level-cache, the main memory, etc. Attackers do
not have permission to write or read the data in user memory, but
the existing tools allow attackers to exploit the side channels to
obtain the information. Based on the difference, we will discuss
three levels of threats according to different knowledge that
attackers can obtain from the victim.
Full-knowledge Attack: The full-knowledge attack is considered
the worst-case scenario. The attackers can exploit powerful tools,
e.g., Cache Side-Channel Attack targeting the LLC [36], [37],
and obtain the memory data loaded into the cache. Although the
throughput of such a channel is small (< 1 MB/s [38]), the model
will be at risk if some of the sensitive data in the memory are
leaked. In such a setting, we assume that the model weights risk
being exposed to the attackers. Also, attackers know the proposed
defense method, e.g., the randomized rotation, and can deploy
an enhanced attack if any leakage still exists. In this paper, we
provide an option to deploy the secure mode of RREC for such
a worst-case situation. For the general purpose, RREC deploys
the performance mode to achieve lower overhead since a full-
knowledge attack is not practical.
Basic White-Box Attack: The attackers cannot read data in
memory, but they can roughly guess the location of the most
vulnerable bits to conduct rowhammer attacks. For two reasons:
1. Most of the commercial models and dataset are open source,
model users commonly download the pre-trained model and cus-
tomize it by transfer learning [39]. Those models will share the
same vulnerabilities with the open-source models, where attackers
can learn information from them. 2.Attackers can leverage the
hardware tools to monitor the memory access patterns [40], [41],
and therefore correctly guess the model architecture. According
to the model architecture, attackers can locally train a own model
which also share the same vulnerability as the users model.

White box attack is dangerous, where the experiment shows
that it takes less than 30 bits to crash ResNet20 on average. We will
assume the threat model in a similar way as previous attempts [20].
Black-Box Attack: Black-box adversarial attack [42] is the alter-
native option when attackers fail to obtain any knowledge of the
model. Black-box attack can damage the model without knowing
neither the model architecture nor the weights, but it requires a
massive amount of attempts. By leveraging Rowhammer, one ef-
fective attack is Random High-Bit-Flip-Attack, where it randomly
chooses weights in DNN model and flips the MSB or sign bit.
From the experiment, we observed that Random-High-Bit BFA
takes around 1, 500 bits to crash ResNet20.

3 DESIGN

3.1 Rationales
Our first design is based on the observation of the behaviors of
BFA at the bit level. BFA computes the derivative of bits and flips

Fig. 2. Flipping Random Bits Vs. Flipping MSB. Experimental result
is collected by conducting Random BFA on ResNet-20. Both attacks
randomly select weights in model. The random bit flip attack randomly
flips 1 bit in a 8-bit weight, and the random MSB attack flips the MSB in
that weight

those bits with the largest derivative. The partial derivative of bits
is always a constant for all the weights in a model, and it can be
deduced as:

dL
d bi

=
dL
d B
· dB
d bi

=
d(−128 · b7 +

∑6
n=0 2nbn)

dbi
= 2i · dL

d B

recalling that bi is the bit-wise representation of each bit. Accord-
ing to the optimization method, the highest absolute gradient must
be the most significant bit b7, or the sign bit. The gradient of
MSB is 128 times larger than that of the least significant bit b0,
and it theoretically implies that flipping MSB is 128 times more
effective than LSB. Although gradient might be not accuracy to
measure a large change, flipping the higher-significant bits often
brings more negative impacts. In Fig. 2, we mimic the scenario
when attackers know zero information of a model, and randomly
flip bits. The result shows that flipping higher ordered bits are still
2-3x more effective than flipping random bits.

Therefore, protecting the significance of bits is essential in
defending BFA. If the order of bits is unknown to attackers, the
randomly chosen bits will have an equal chance to touch all bits in
a weight, where the less significant bits are tolerable for the DNN
model. We propose to use bit-level randomization to obfuscate the
order of bits, where less vulnerable bits hide the true vulnerable
ones. Randomization securely generates a secret pattern and orders
the memory data via such pattern. This randomization will be
considered valid if the secret does not leak to attackers. In
implementing this randomization, we investigate all the existing
hardware failures and carefully design data paths in the hardware
to avoid leaking secret information since the potential threats are
the hardware side-channel attacks.

The second design, nonlinear encoding, is based on the ob-
servation that the distribution of weights is similar to Gaussian,
where its meaning is close to 0, and its variance is relatively small.
Moreover, the statistics show that most of BFA’s weights are also
close to zero, and BFA flips the MSB to alter it from around 0
to ±128. Hence, the bit-flipping will be less vulnerable if we
generate more protection on those close-to-zero weights. RREC
applies a nonlinear encoding method that spares the precision from
large-value weights to the small-value weights. The bit-flipped
distance significantly reduces when the target weights have a small
value.

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 5

Matrix
Convolution

RREC (Offline)

Memory

On-Chip Computation

ROT

Full Precision
Weights

ROT

True Random
Generator

Pre-Trained
Model

Decode

Re -
Encoded

4

-0.20.11 0.2

0-0.3 -0.1

0.010.12 -0

La
ye

r:
 1

La
ye

r:
 21055 72

17-61 -41
-9121 34 La

ye
r:

 3

∆" = 0.34

1

(): np2Mzf7ye0DKPrKB

Secret Seed Layer: 1

(): np2Mzf7ye0DKPrKB

Secret Seed Layer: 2

(*: np2Mzf7ye0DKPrKB

Secret Seed Layer: 3

Pseudo Rand
Generator

La
ye

r:
 1

La
ye

r:
 2Rotate Distance

214
-557
799 La

ye
r:

 3 Memory Free

Non-Linear
Quantization

La
ye

r:
 1

La
ye

r:
 24285 95

33-87 -71
-16127 55 La

ye
r:

 3

∆" = 0.34
+ = 17 . = 4

Rotated
Model

La
ye

r:
 1

La
ye

r:
 2-5714 77

80-19 125

-11-5 43 La
ye

r:
 3

∆" = 0.34
+ = 17 . = 4

(*:
Secret

(*:
Secret

(*:
Secret

Post
Training

2

La
ye

r:
 3

La
ye

r:
 2

La
ye

r:
 1

IO

La
ye

r:
3214

-557
799

Distance
-5714 77
80-19 125

-11-5 43 La
ye

r:
 3

∆" = 0.34
+ = 17 . = 4

PSRNG

Recovery

Registers

Group 1 4285
214

Batch: 1 Batch: 2

-295

Group 2 33-87
-557

-54-71

Group 3 -16127
799

-2955

3

1 0 0 0 0
0

1 1 1 0
+2141

Bit-wise Rotation

Fig. 3. Layout of RREC. RREC consists of 3 operations in offline stage and 1
operation in runtime stage: ¬ Re-encode the weights to nonlinear quantization,
and conduct the post-quantization training; ­ Secretly generate the secret seed
and the rotation distance table; ® Group weights and rotate them batchly; ¯
Rotate backwardly, and recover weights back to a computational format.

RREC contains two defenses: 1. Randomized rotation ob-
fuscates the bit order of weights and hides the position of
most vulnerable bits; 2. Non-linear encoding further reduces the
distance between two values when their Hamming distance is
small. Moreover,RREC consists of both offline preparing stage
and online processing stage. The major computation overhead is in
the offline stage so as to keep the runtime processing lightweight.

3.2 Design Workflow

When the users start the application, RREC loads the unencoded
model from the disk and secretly performs offline preparation.
During runtime, the model is stored in memory, and when an
inference request is sent, the application fetches the model weights
from memory to the computational unit: CPU or GPU. In Fig. 3,
the flow of offline preparation is plotted in the orange background
box. We will introduce RREC in two separate stages: the offline
stage (in the orange box) and the runtime stage (in the yellow
box).

3.2.1 Offline preparation
¬ Post quantization training: RREC acquires a trained model
from disk, and the model should be trained by 8-bit QAT. We
first re-encode the 8-bit linearly quantized weights into nonlinearly
quantized weights. To optimize the nonlinear function, we need
to run a few iterations of post-quantization training and ensure
no significant degradation in model accuracy. The details will be
elaborated at the next section.

­ On-chip secret preparation: We first allocate a small secret
region on chip, i.e., CPU register, to store the secret keys. Then,
we generate the rotation table on the fly via secure pseudo-random
number generator(PSRNG) using secret keys. The secret keys
consists of multiple 64-bit true random seeds, and each seed is for
the corresponding DNN layer. As is shown by information theory,
the 64-bit seed for PSRNG is sufficient to defend the brute force
guessing. The rotation table for each layer, consists of multiple
8-bit rotation distance, and the size of rotation table is depended
on the size of weights in the layer.

® Bit-wise rotation (offline): For randomizing the weights
in memory, we first invert the distance table (× -1) and use the
inverted distance to rotate the weights. Such process will repeat
for each layer in the model. Finally, the rotated weights are loaded
in memory, and those weights encoded by RREC are robust and
fault-tolerant against BFA.

3.2.2 Runtime Stage

¯ Decoding in runtime: The runtime stage is activated when
users send the inference request to the model. We first load the
encoded weights from memory to CPU or GPU. We first generate
the distance table by the secret seed, and use the distance table
to rotate the weights. After the weights is rotated, we will free
the distance table, but the secret seeds are still stored in the on-
chip register. Second, we use the inverted quantization function to
convert the weights back to the floating-point format. Such process
repeats for each layer in DNN model.

3.3 Randomized Rotation

3.3.1 Rotation Logic

The computational overhead is important, since the runtime de-
coding repeats each time when inference, and the major overhead
is from generating the distance table. We gather multiple 8-bit
weights to form a group, and rotate the group of weights a single
instruction. Second, we batch more groups together and use the
same rotation distance to rotate all groups within the batch. Hence,
we define two parameters to describe the above strategies, group
size: number of weights that are batched to rotated; batch
size: number of batches that share the same rotation distance.

As is illustrated in block ® of Fig. 3, we first concatenate
(group size) of 8-bit weights to form group. The rotation
operation shifts all bits in a group to either left or right in a circular
manner, and the distance of shift is depended on the parameters
in the generated distance table. The most efficient way to choose
the group size is to fit the size of computational device. In a
64-bit system, the ALU operates 64 bits inputs, and we choose the
group size as 8, since 8 of 8-bit weights can form a 64 bits
ALU input. We can find 64 of different distance to rotate a 64-bit
group, so the distance can be stored in 8-bit byte.

Moreover, we define, batch size, where all groups in the
batch will share the same rotation distance. The detail of rotation
algorithm can be described via the bit-wise format that we first
concatenate equally (group size) of 8-bit weights. Second,
we shift each bit to the right (or left) by a certain distance from
distance table. Third, for those bits shifted outside the bound, we
take the modulo and concatenate them to the beginning. Finally,
the rotation will be repeated equally (group size) times using
the same distance until all groups in a batch is rotated, and then
process the next group: The rotation is a symmetric process, and

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 6

Channel: 02K

2K

M
em

or
y

C
ha

nn
el

:
0

User : 2

User : 3

User : 1

8K

8K

8K
Page: 0 Page: 1 Page: 2 Page: 3

+4K
Page Channel: 1+

←

M
em

or
y

C
ha

nn
el

:
1

User : 2

User : 3

User : 1

8K

Page: 0 (2K) Page: 1 Page: 2 Page: 3

Row Hammer

Row: 1 8K

8K

Row: 2

Row: 3

Fig. 4. Example of Data Structure on Rowhammer Threat Model.
The 2K bytes sub-pages is the minimum memory unit in both software and
hardware level, so we use (page size) / (# of channel) as group size.

we can encode the weights use the negative distance to decode
them.

A large Batch size can reduce size of generated random
table and save the computation. The choose of the Batch size
is a trade-off between the randomness and the performance. In this
work, we design the rotation scheme in two modes: performance
mode and secure mode. The secure mode will use smaller batch
size to ensure the randomness and defend the full-knowledge
white-box attack, and the detail will be discussed in Section 3.5. In
this section, we will discuss the performance mode for defending
the basic white-box attack.

3.3.2 The Metrics of Choosing the Batch Size

According to Rowhammer, only a small proportion of the bits in
a row are easily flipped, where the previous work show around
it is around 10 bits per memory rot [29]. Once over 10 bits are
flipped, the rest of flipping will be increasingly harder. Therefore,
if attacker cannot correctly locate those vulnerable bits within 10
attempts, the attack on the entire row fails. Our strategy is to make
sure that we provide enough randomness to prevent attackers from
correctly guessing the rotation distance within 10 attempts. Once
their attempts run out, the rest bits in the same row are secure.

In Fig. 4, we demonstrate the data organization of the threat
model under Rowhammer. At the hardware level, data is stored in
memory rows, where each row carries 8KB. As modern computer
doubles or quadruples the memory channels, a single-row fetching
will go thorough all memory channels. At the software level, the
operating system assigns memory to different applications at the
granularity of 4KB pages. Each page is stored in 2 channels and
each channel stores 2KB of sub-page. Hence, each 8KB memory
row commonly stores 4 sub-pages. As the operating system
assigns memory to application in unit of pages, one memory row
typically contains sub-pages from different applications, but each
sub-page always belong to one application. Therefore, we choose
the group size that equals to the size of a sub-page, since it
can completely ensure that all data in a sub-page are physically
allocated in the same channel and the same memory row.

The optimal solution is to choose a sub-page 2K bytes to
rotate, i.e., batch size is 256. In such setting, we need to
generate 1 8-bit rotation distance for each batch, and the size
of distance table we need to generate is 1/2048 of that of the
DNN model. For instance, VGG-11 model stores its module data
with about 76 MB memory space, and we need to generate about
300 KB of pseudo random number, which can be considered as a
negligible overhead.

Quantized Weights (!W)

Fl
oa

t-P
oi

nt
 W

ei
gh

ts
 (W

)

(a) Nonlinear VS. Linear Quantization (# = 15, (= 3)

Fl
ip

pi
ng

 D
is

ta
nc

e

D
is

tri
bu

tio
n

Quantized Weights (!W)

*+(-.)

(b) Bit-Flip Distance & Weight Distribution
= 15, (= 3, i = 3 (Flip the 3rd bit)

1[-.]

1 !4[!5]
1 !46[!5]

2x4x6x

Fig. 5. Example of Nonlinear Quantization function. (a) compares the
nonlinear quantization (red curve) with the linear quantization (blue curve),
where nonlinear one assigns more precision at close-to-zero region. (b)
compares the Bit-Flip distance between nonlinear (red curve) and linear (blue
dash curve) quantization function, where when weights are small, nonlinear
function achieves 6x, 4x and 2x more robust than linear function. (b) also
shows the weights distribution of both entire weights EŴ [Ŵ] and the weights
with upper quarter gradient EŴ+ [Ŵ].

3.4 Nonlinear Encoding and Robust Optimization

Since the we rotate weights in bits level, attackers fails to locate
the MSB, so every bit in a weight has equal chance (1/8) to
be flipped. In this section, we will introduce a robust version
of nonlinear quantization method to further minimize the BFA
impact.

3.4.1 Robust Nonlinear Quantization
First of all, we select a power function quantization function, and it
is plotted in Fig. 5 (a), where the output grows faster with the input
becomes larger. The previous work [24] proposes to use power
function to server better precision to the majority of weights, and
shows that it achieves better accuracy with minor computation
overhead. In this work, we explore the method to bring robustness
to the power function. The first difference is that we introduce a
starter α to regulate the grow speed of the quantization step, which
is:

W = Q−1nl (B,α, γ) = sign(B) ·∆w · ((|B|+ α)γ − αγ),

where , ∆w = max(W)/((128 + α)γ − αγ)

We constructs a power function with a integer power coefficient
γ, and we set γ ≤ 5 as a bound to limit the computation of the
power function. The starter α shifts the quantized weights away

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 7

from the low-growth interval and ensure a steady growth even
when quantized weights are small. To neutralize the shift by that
starter α, we introduce a compensation term −αγ at the end of
the function. Finally, we computes the scale ∆w by remapping
the float-point weights domain back to [−max(W),max(W)].

We capture model weights from the third convolutional layer
of ResNet20 and plot the bar-chart of the distribution of weights
in Fig. 5 (b). We can observe that model weights are densely
distributed in the closed-to-zero region and sparsely distributed
in the close-to-maximum region. The power function can provide
better precision for the majority of weights.

In this paper, we will study how to make the non-linear
function more robust, which is to minimize the numerical change
when bits being flip. We define such change as the flipping
distance, Di, as follow:

Di(B) =

{
|Q−1nl (B + 2i)−Q−1nl (B)| , if the flipped bit is 0
|Q−1nl (B − 2i)−Q−1nl (B)| , if the flipped bit is 1

We plot the function of flipping distance of as the red curve and
blue curve in Fig. 5 (b), where the flipped bit is the 3rd bit, and
we set α = 15 and γ = 3. The blue curve is from linear function,
which is a constant 23 = 8; the red curve is from nonlinear
function. From the curve, when B < 25, the flipping distance of
nonlinear function is 6x smaller than linear one; When B < 32,
we get more than 4x smaller distance; When B < 48, it is still
2x smaller. When we consider the average flipping distance of all
weights, the gains is, EB [D3(B)]/23 = 3.41.

In Fig. 5 (b), we also show the distribution of weights whose
gradient are the top 25 % largest in the yellow bar charts.
According to the white-box BFA, attackers prefer to target those
weights with higher gradients, since flipping them creates more
impact to the overall prediction result, and the weights with small
gradient are not sensitive to being attacked. Hence, we define
Ŵ+ as those weights whose gradients exist in upper quartile
(top 1/4 largest) and use them for the computation. As we can
observe, the more than 80% weights are distributed at the left side
of the intersection point of blue curve and the red curve, which
verifies that the nonlinear quantization further improves the BFA
robustness of the majority of weights.

3.4.2 The Optimal Parameters
In this work, we also design a lightweight training to compute the
optimal γ and α. During the offline-preparation stage, we define
a loss function, deploy a few steps optimization to minimize this
loss, and solve the parameters. The loss function is written as:

L(α, γ) =
∑
∀Bi∈B

∇Bi · P(Bi)︸ ︷︷ ︸
Average precision

+ c1 ·
7∑
i=0

EB+ [Di(B)]︸ ︷︷ ︸
Average BFA distance

+ c2 · γ︸ ︷︷ ︸
Regulation

We minimize both the precision P and the absolute value of BFA
distance D. The precision (length of each step) of is defined by
the difference between two consecutive encoded weights, which is
formulated as:

P(B) = Q−1nl (B + 1)−Q−1nl (B)

We multiply precision P with the gradient of weights ∇B to
assign more credit to the weights that are vulnerable, recalling

that flipping those weights with large gradient can easily crash the
model. Further, the second term in the loss function is a summation
of all 8 flipping distance, where each distance function evaluates
the average distance of the i-th bit being flipped. Finally, we
introduce a regulations term to limit the growth of the exponential
coefficient, since the computational overhead linearly grows as the
exponential term γ increases. We also use some constant c1 and
c2 for tuning.

The detail of the optimization is shown in Algorithm 1. we
used for α is the gradient descent during each epoch, and we
use round operation to form the result into integer. Since the
exponential coefficient γ is defined as discrete integers within a
small interval (e.g. γ ∈ {2, 3, 4, 5}), during post training, we try
all possible γ, e.g. γnew ∈ {γ + 1, γ, γ − 1}, and select the
parameter with the minimal loss.

Algorithm 1: Optimization of Non-linear Quantization
B,∆w ← Pre-Trained and Quantized Weights
Function α, γ,∆w,B←PostTrain(B,x, t,∆w):

n← Post Training Epoch
α, γ ← Random initialization
\\Get the full precision weights
W← Q−1(B,∆w)
repeat few epochs
\\Backward the model
∇W← ∇W`(f(W,x), t)
foreach l ∈ {1, 2, · · · , L} do
\\Call the parameters seeker
αlnew, γ

l
new,W

l
new ← Cal(αl, γl,Wl)

\\Slightly train the model
Wl ←Wl − η∇Wl

\\Compute the quantization step
∆wlnew ← max(Wl) · ((128 + αl)γ

l − αlγ
l

)

\\Convert float− point to byte
B← Qnl(W, α, γ,∆w)

Function αnew, γnew,W← Cal(α, γ,W):
\\Optimize the parameters
αnew ← bα− η · dL(B,α,γ)dα e
γnew ← argminγ [L(γ − 1),L(γ),L(γ + 1)]

W← Q−1nl (Qnl(W, α, γ), αnew, γnew)

In Algorithm 1, we demonstrate all operation during the
offline preparing stage, including non-linear encoding and post
quantization training. In the beginning, we fetch the pretrained
and quantized model as well as its scale ∆w, and then we convert
it to the float-point version to do the training. During training, we
will first backward the loss function to training weights and let
model adapt the new quantization function. Next, we iterate each
epoch, use the previous method to update new α and γ, and after
these coefficient updates, we calibrate the weights. After training
is done, we convert the weights back to 8-bit quantized form and
conduct the rotation.

3.5 Security Analysis

The security of this work is to ensure the secret information, e.g.,
the distance table and the secret seeds, would not leak to other
parties. If attackers know the distance table, they can recover the
true bit-wise vulnerability and bypass the protection.

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 8

TABLE 1
Percentage of ’1’ appearing in each bit.

b7 b6 b5 b4 b3 b2 b1 b0
Linear 48% 7 % 34% 51% 52% 51% 49% 48%

NonLin 49% 28% 45% 50% 50% 51% 49% 50%

3.5.1 Analysis of Side-Channel Resilience
First, the secret information will not leak through the model
output. The rotation will not affect the actual values of the model
weights. All weights are decoded after fetched to CPU or GPU, so
all the rotation will lead to the same inference output.

Second, there is no other side-channel attack that can directly
leak the secret seed and distance table. We allocate multiple on-
chip registers (64 bits) to store the secret seeds. Such on-chip
registers are not shared with other parties, so there is no such a
side channel. Also, the 64-bit-length key is sufficient to defend the
brute-force guessing. The distance table is generated during the
runtime stage, it will be freed after being used, and the existing
cache channel cannot catch them within such a short time.

3.5.2 Defend The Full-Knowledge BFA
As is discussed in Section2.4, there exist the cache side-channel
to leak the memory data. In such setting, attackers can analyze the
distribution of the bits and guess the rotation distance via statistics.

We notice that the binary value, ’1’ and ’0’, in the DNN model
weights are not evenly distributed. Table 1 shows the percentage of
’1’ appearing in each bit. The notation, b7, is the sign bit, and b6 is
the MSB, and b5, b4, · · · are the lower significant bits. We observe
that the MSB or the SSB have a higher chance of being ’0’ than
’1’. For example, in the linear quantized model, the MSB only has
7% of bits that are ’1’. The nonlinear quantization mitigates the
bias, but it is still 28%. Because of such bias, we cannot batch too
many weights to share the same rotation distance. Attackers can
count the percentage of ’0’ and ’1’ appearing in each bit and guess
those bits with the lowest percentage of ’0’ are the MSB.

To hide this bias, we propose secure mode that reduces the
batch size and generates more randomness to hide this bias.
We use statistics to address this problem. First, we define a
hypothesis test: there exist certain bits in a batch that appear
to have a lower than 50% chance to be ’1’. Second, we assume
that attackers do not know the actual percentage of being ’1’. We
solve this hypothesis test by estimating a Gaussian distribution
whose sample size is equal to batch size, and the certainty of
rejecting this hypothesis is 95%. Third, we can obtain the largest
batch size that satisfies the hypothesis, and these steps will
be repeated for each layer in the DNN model. Finally, we round
the result to the next multiples of 2. Empirically, batch size
is set to 8 or 16.

4 EVALUATION

TABLE 2
Model Configurations

Model Dataset Base ACC. RREC ACC. Size
ResNet20 CIFAR10 92.3% 92.6% 23 MB
VGG11 CIFAR10 87.7% 88.8% 76 MB

FC MNIST 98.1% 98.3% 114 MB
MobileNet ImageNet 68.5% 69.1% 27 MB

DNN models and datasets: We train 4 networks: VGG-11 and
ResNet-20 on CIFAR-10, a Fully Convolutional Network(FC) on
MNIST and MobileNetV2 on ImageNet. For FC, we build a
simple sequential model, which consists of two convolution layers
and two fully-connected layers. We use 8-bits quantization in all
the experiments.
BFA configuration: We test the robustness of RREC against
previous works. We use the public code-bases: BFA [5] and
Targeted-BFA [6]. We use the same attack setup with the one
reported in [35]. For testing BFA, we randomly select 256 input
images from the validation set, and use those images to perform
BFA and collect the decline of accuracy. For testing Targeted-
BFA, we select 1, 024 validation set and conduct the attack for
100 times with random initialization.
Hardware platform: All the experiments are conducted using
Pytorch, running on the platform with an AMD Ryzen 3900XT
CPU and an NVIDIA 1080TI GPU.
Implementation: All the defenses are software based. The code
is written using PyTorch [43] platform. The offline preparation
is implemented at the beginning of the main function, which is
called when the program initiates, and the runtime rotation is
implemented at the forward function of the DNN model, which
is called when it receives an inference task.

4.1 Latency Analysis
RREC prepares weights and trains the parameters offline, which is
a one-time cost. We list the overall runtime of offline preparation
in Table 3, offline column, which ranges from 2 seconds to 8
seconds. Compared with the one-time offline cost, we focus more
on the runtime and separately show it in two parts: Rotation
and nonlinear encoding cost. The rotation cost consists of two
parts: First, we should generate the rotation table whose size is
1/2048 of model size; Second, the rotation is accomplished by
the system instruction, logic roll, which is a logical operation, and
it takes around the same time as an element-wise multiplication.
The nonlinear quantization can be regarded as γ times element-
wise multiplication applied to the model weights. Compared with
linear quantization, the nonlinear version has (γ − 1) more mul-
tiplication, which implies that if γ is a small integer, its overhead
will be acceptable.

We test the performance of four different models running
in both CPU and GPU and plot the latency on Table 3. Both
nonlinear encoding and rotation are implemented as a patch on the
quantized model. We choose the image batch is 16, and the larger
image batch will increase the inference time but will not bring
a significant impact on RREC. The latency of rotation distance
generation is in proportion to the size of weights. The overall
overhead is measured by the ratio over total inference latency,
which ranges from 2% to 8%.

4.2 Robustness Defending BFA
4.2.1 Defending the basic white box attack
In the experiment, we mimic the behavior of attackers that use
backward gradient to locate the target weights and flip the MSB.
Although Rowhammer allow attackers to flip more than 1 bit
in a memory weights, flipping multiple bits in a weights might
not be as effective as flipping the sign bit for multiple weights.
To simplify the experiment, we use the assumption that once a
bit in weight is flipped, the attack program will not touch that
weight again. BFA is conducted on all aforementioned networks

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 9

(a) ResNet-20 (b) VGG-11 (c) FC (d) MobileNet V2

Rotation Only Rotation + Non-linear Quantization Baseline

Fig. 6. White-Box BFA Performance in Different Model and Defense Schemes. The plotted data is collected from white-box BFA attacks on ResNet,
VGG, FC and MobileNet models. We compare three defense schemes and plot their accuracy drops w.r.t the number of bits being flipped. The yellow line is for
the baseline model (without defense), the red line is for the rotation only model, and the bule line is for both rotated and non-linearly quantized model.

TABLE 3
Latency Analysis. Latency is recorded in milliseconds(ms). The inference

latency is collected from the baseline model and the rest two columns are
collected from proposed RREC model.

Model Inference Rot. only Rot & NonLin Offline

CPU

ResNet 715 22 (3.0%) 35 (4.9%) 2424
VGG 1066 40 (4.5%) 78 (7.3%) 6557
FC 1447 50 (3.9%) 107 (7.3%) 8003

MobileNet 2382 17 (0.7%) 38 (1.6%) 2769

GPU

ResNet 51 1.9 (3.7%) 3.0 (5.8%) 235
VGG 94 3.5 (3.7%) 6.5 (6.9%) 823
FC 115 4.7 (4.0%) 8.8 (7.6%) 1070

MobileNet 224 2.4 (1.2%) 3.9 (1.7%) 355

and record the prediction accuracy after each bit is flipped. We
repeat the flipping processes by 10 times and take the average
where each time choosing different input images with 128 batch
size.

In Fig. 6, we plot the first 300 bits model accuracy during
white box attack. ResNet-20, VGG-11, and FC predict the images
from CIFAR and MNIST dataset, both of which consist of 10
output labels, so the lowest accuracy will drop to 1/10 = 10%,
which is a equivalent random number generator. The MobileNet
model predicts ImageNet with 1000 labels, and the lowest accu-
racy can drop to 1/1000 = 0.1%. As is shown in baseline model,
if we don’t implement any defense method, the models will easily
crash, and after about 20 to 40 bits flipped, the accuracy drops
to 10 % or 0 %. Rotation and nonlinear encoding significantly
improve the robustness in defending the BFA, which can resist
about 300 flipped bits and it still maintains an accuracy about 30%
and it is about 17.5x more robustness than the baseline model.
Moreover, when we enable the nonlinear encoding, the accuracy
drop is further decreased, and the robustness reaches 10x times
more than the baseline model.

4.2.2 Defending the black box attack

When a model is loaded to memory but there is no inference task
under processing, attackers have plenty of time to conduct BFA
and flip the bits. We mimic the attack that it randomly generates
layer indexes, kernel indexes, and weight indexes as the location
of the target, and randomly choose MSB or sign bit of the target to
flip. The flipped bits will be recorded in case of not being flipped
again. Black-box BFA performance is plotted in Fig. 6 (b), where
the impact of black-box BFA is still considerable, where around
1000 of MSB flipping will significantly harm the performance.

The randomized rotation hides the ordered information of bits and
we observe that the speed of accuracy degrading is 4.4x more
robust than baseline model. Further, when the nonlinear encoding
is enabled, such speed is reduced to 1/6, where even when 1000
bits are flipped, the model still maintains a promising accuracy.

TABLE 4
Comparison of BFA performance between 1-bit, 4-bits QAT and

RREC. The white-box performance measures # of bits that drops the
accuracy to below 20%; The black-box performance measures # of bits that
drops the accuracy to below 50%. RREC outperforms 4B QAT largely and

reaches the same level as 1B QAT

Model Attack Types 1B QAT 4B QAT RREC

ResNet
White-Box BFA 393 71 388
Black-Box BFA 2,775 477 3,791

Model ACC. 86.6% 91.5% 92.6%

VGG
White-Box BFA 1104 233 975
Black-Box BFA 6,007 992 6,510

Model ACC. 82.8% 87.6% 88.8%

FC
White-Box BFA 921 128 766
Black-Box BFA 5,070 661 5,113

Model ACC. 95.8% 97.5% 98.3%

MobileNet
White-Box BFA 174 55 203
Black-Box BFA 1,033 259 1,428

Model ACC. 63.3% 67.8% 69.1%

4.2.3 Comparison with existing defenses

We also evaluate the result comparing RREC with the previous
works, weight re-construction and quantization-aware-training.
Since their implementation is not published, the data is collected
from the previous paper, which tests 20-bits BFA on ResNet-20.
We repeat the experiment of QAT model in local machine and plot
the BFA performance of both 4B and 1B QAT models in the same
curve. In Fig.??, the benign model has the fastest of the accuracy
drops, 92−22 = 70%; The Weights-reconstruction model (orange
line) experiences a obvious accuracy drops, 92 − 58 = 34%;
4B QAT slightly outperforms Weight-reconstruction model, which
achieves 92− 70 = 22%; 1B QAT does not observe an obviously
accuracy drop. RREC model is worse than 1B QAT model, which
drops to 86%, but the clean accuracy RREC is 6.6% higher than
1B QAT. We use the accuracy degradation to evaluate robustness,
where RREC is 5.7x more robust Weight Reconstruction.

Moreover, in Table 4, we further compare the performance
of 1B QAT, 4B QAT VS. RREC. We compare both white-box
attack and black-box attack on 4 different network architectures
from 3 defense mechanisms. RREC gains 5.46x, 4.18, 5.98, and

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 10

Fig. 7. Comparison With The Existing Defenses. The experiment
measures the accuracy change of different defense shcemes after 20-bit
white-box BFA on ResNet-20 model.

3.70 respectively of robustness outperforming 4B QAT. When
compared with 1B QAT, the robustness of RREC is 0.96x of that
of 1B QAT model, but RREC outperforms 1B QAT in defending
black-box BFA, where it achieves 1.2x more robust. Although 1B
QAT model achieves the best performance, it is not a practical
commercial used model since it compromised too much accuracy.
We list all the model accuracy in Table 4, and we can observe
that RREC achieves the highest pure accuracy, and 1B QAT losses
about 6% of accuracy. For example, 1B QAT ResNet model has
an accuracy of 86.6%, and our nonlinear encoding model achieves
92.6%.

TABLE 5
RREC Performance Defending Targeted-BFA

Model # of Bits Baseline Rot. Only Rot. + NL.
Flipped Def. Rate Def. Rate Def. Rate

ResNet 5.1 3 % 91 % 97 %
VGG 7.8 0 % 93 % 99%
FC 6.0 1 % 90 % 93 %

MobileNet 18.6 5 % 88 % 99%

4.2.4 RREC VS. Targeted-BFA

Targeted-BFA is a variant of BFA, which generates significant
accuracy degrading on a certain class with minor bits flipped. Ac-
cording to the proposed stealthiness, prediction result of ordinary
class would not be affected. Targeted-BFA uses ADMM solver
[44] to descend the loss function and computed the minimum
amount of bits that makes this attack successful. We evaluate
the performance of Targeted-BFA on RREC model. The success
rate counts the events that the model misclassifies the majority
of class when feeding 128 image inputs. We evaluate both the
Targeted-BFA performance on all baseline models, rotation only
model, and rotation + nonlinear encoding model. To illustrate our
result, we show the defense rate in the table, where the larger of
digits the more robust of models.For the experiment, we simulate
that scenario in aforementioned models. Targeted-BFA duplicates
a model in their local machine and runs the optimization. We
run the solver under a naive model (without the knowledge of
rotation detail) and use it to attack RREC model. Table 5 shows
that Targeted-BFA requires only a small amount of bits to succeed,
and it achieves almost 100% of success rate on the baseline model.
However, RREC rotates the target bits into random locations, and

as is shown that it is more robust against Targeted-BFA, where the
defense rate is increased from less than 10% to larger than 90%.

4.3 Secure Mode

The secure mode use smaller of batch size than performance
mode to generate the randomness and avoid the information leak
when the weights can be read by attackers. Although the secure
mode brings a non-negligible overhead and it does not improve
the robustness, it can efficiently avoid the catastrophe that leaks
the secret information. From the experiment, we solve that the
smallest batch size to guarantee the randomness is around
8 to 16. Compared with the performance mode that choose the
batch size as 1024, the secure mode needs to generate 128
or 64 times larger rotation table, which contributes the majority
of the overhead. The rest operations, e.g., rotation and non-linear
quantization are the same for both performance mode and secure
mode.

In Table 6, we evaluate the secure mode and show its latency
and robustness. The latency measures both rotation and Nonlinear
Encoding overhead of RREC in secure mode in milliseconds(ms).
The ratio is compared with the model inference of 16 images
batch. The secure mode brings about 10% to 30% of com-
putational overhead, which is about 5x to 7x slower than the
performance mode.

The last two columns measure the accuracy after 300 bits flip-
ping by white-box BFA for both modes. The performance (PRF.)
mode assumes that the rotation fails because of the aforementioned
information leak, and attackers can still find the MSB to flip. The
secure mode assumes that the rotation is still trustworthy. The
result shows that the rotation operation plays an important role
in defending BFA. The prediction accuracy after 300-bit flipped
drops to the minimum when the rotation fails, and the secure mode
can avoid such failures and still provide a promising accuracy.

TABLE 6
Comparison of RREC Secure Mode and Performance Mode.

Model CPU GPU 300-Bit Full-Knowledge BFA
Latency Latency PRF. mode Secure mode

ResNet 191 (27%) 9 (18%) 10% 41 %
VGG 417 (39%) 21 (22%) 10% 56%
FC 339 (31%) 27 (24%) 10% 51 %

MobileNet 228 (9%) 15 (7%) 0% 22%

5 RELATED WORKS

5.1 Quantization-Aware Training(QAT)

The Binarization-aware Training (BAT), a variant of quantization-
aware Training, was proposed in 2020 as a defense of the BFA.
Using this method can make a DNN model several times more
robust than the baseline where there is no defense. The idea of
the BAT is derived from quantization-aware training: in BAT, a
DNN model is trained with binarized weights. As the gradient-
based algorithm used in BFA tends to flip the sign bit of a
weight, binarization-aware training intrinsically acts as training
the DNN model with bit-flip noise injected. Thus, the trained
DNN model will be less sensitive to gradient-based BFA. Previous
studies show that BFA is less effective when the model are trained
by Quantization-Aware Training (QAT) [45]. Binarization-aware
Training (1B QAT) is a particular case of QAT and it resists BFA

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 11

in maximum. Using this method can make a DNN model several
times more robust than the naı̈ve model. However, the downside of
the QAT defense is that it loses data precision and compromises
the model accuracy. Experiments show that there are 1-3% of
accuracy drop for 4-bits quantization model, and 6 − 7% for the
BAT model.

5.2 Weight Reconstructing
Another previous work [21] observed that the gradient of vul-
nerable weights is much higher than their neighboring weights.
Statistical means of the vulnerable weights are computed, and all
weights are reconstructed to a region close to this mean. In this
work, the authors used the weight reconstruction method to spread
the gradient of the target weights to their neighboring weights.
All weights are reconstructed to a region close to this mean.
The reconstruction modifies the quantization function and remaps
weights into a smaller region, which limits the change distance of
weights caused by a potential bit-flip.

6 CONCLUSION

In this work, we propose a security primitive that generates a
robust DNN model, and it tolerates the Bit-Flip Based attack.
RREC protects models by two mechanisms: 1. randomly rotate
the bits to obfuscate and degrade the performance of white-box
adversarial attacks; 2. nonlinearly encode weights to spread the
risk of high significant bits being flipped. RREC is capable to
defend the white-box attack and increases the robustness about 4x
to 5x.

REFERENCES

[1] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 365–
382.

[2] R. N. Reith, T. Schneider, and O. Tkachenko, “Efficiently stealing your
machine learning models,” in Proceedings of the 18th ACM Workshop on
Privacy in the Electronic Society, 2019, pp. 198–210.

[3] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in Proceeding of the
41st Annual International Symposium on Computer Architecuture, 2014,
p. 361–372.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[5] “Bit-flips attack and defense,” https://github.com/elliothe/BFA, 2020.
[6] Y. Z. Y. L. Z. L. S.-T. X. Jiawang Bai, Baoyuan Wu, “Targeted attack

against deep neural networks via flipping limited weight bits,” in ICLR,
2021.

[7] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem, S. Gab-
meyer, S. Katzenbeisser, and J. Szefer, “Intrinsic rowhammer pufs:
Leveraging the rowhammer effect for improved security,” in 2017 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2017, pp. 1–7.

[8] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 55–71.

[9] N. Herath and A. Fogh, “These are not your grand daddys cpu perfor-
mance counters–cpu hardware performance counters for security,” Black
Hat Briefings, 2015.

[10] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat: Stopping microarchi-
tectural attacks before execution.” IACR Cryptol. ePrint Arch., vol. 2016,
p. 1196, 2016.

[11] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[12] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Ap-
plied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[13] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast
and stealthy cache attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2016,
pp. 279–299.

[14] M. Szydlo, “Merkle tree traversal in log space and time,” in International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2004, pp. 541–554.

[15] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms:
classification and state-of-the-art,” Computer networks, vol. 44, no. 5, pp.
643–666, 2004.

[16] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc
server main memory,” IBM Microelectronics division, vol. 11, pp. 1–23,
1997.

[17] O. Mutlu, “The rowhammer problem and other issues we may face
as memory becomes denser,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1116–1121.

[18] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[19] L. Zhao, Y. Zhang, and J. Yang, “Aep: An error-bearing neural net-
work accelerator for energy efficiency and model protection,” in 2017
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2017, pp. 1047–1053.

[20] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defending and
harnessing the bit-flip based adversarial weight attack,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 14 095–14 103.

[21] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and C. Chakrabarti,
“Defending bit-flip attack through dnn weight reconstruction,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[22] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the
line: Practical cache attacks on the mmu.” in NDSS, vol. 17, 2017, p. 26.

[23] S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu, W. Wen, S. Liu,
J. Tang et al., “Progressive dnn compression: A key to achieve ultra-
high weight pruning and quantization rates using admm,” arXiv preprint
arXiv:1903.09769, 2019.

[24] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, “Learning to quantize deep networks by optimizing quantization
intervals with task loss,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4350–4359.

[25] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[26] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “Ptham-
mer: Cross-user-kernel-boundary rowhammer through implicit accesses,”
in Proceedings of the 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, 2020.

[27] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, and Z. Wang, “Telehammer:
Cross-privilege-boundary rowhammer through implicit accesses,” arXiv,
pp. arXiv–1912, 2019.

[28] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 55–71.

[29] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
29th USENIX Security Symposium, 2020.

[30] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[31] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 764–775.

[32] J. Clements and Y. Lao, “Hardware trojan attacks on neural networks,”
arXiv preprint arXiv:1806.05768, 2018.

[33] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural
network,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 131–138.

IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, FEBRUARY 2022 12

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[35] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1211–1220.

[36] Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution,
low noise, l3 cache {Side-Channel} attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719–732.

[37] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in Proceedings of the
53rd Annual Design Automation Conference, 2016, pp. 1–6.

[38] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitraş, “Security analysis of deep neural
networks operating in the presence of cache side-channel attacks,” arXiv
preprint arXiv:1810.03487, 2018.

[39] P. Marcelino, “Transfer learning from pre-trained models,” Towards Data
Science, 2018.

[40] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood et al., “Deepsniffer: A dnn model extraction framework
based on learning architectural hints,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 385–399.

[41] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leverag-
ing shared resource attacks to learn {DNN} architectures,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
2003–2020.

[42] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, “Query-
efficient hard-label black-box attack: An optimization-based approach,”
arXiv preprint arXiv:1807.04457, 2018.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[44] B. Wu and B. Ghanem, “ p-box admm: A versatile framework for integer
programming,” IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 7, pp. 1695–1708, 2018.

[45] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

Liang Liu Liang Liu received the BS degree
from the department of Electrical and Computer
Engineering, Shanghai Jiao Tong University. He
is currently working toward the PhD degree
from the Department of Electrical and Com-
puter Engineering, University of Pittsburgh. He
is also working as graduate teaching assistant
and graduate research assistant. His research
interests include system security, DNN model
security.

Yanan Guo Yanan Guo received her MS degree
from the Department of Electrical and Computer
Engineering, University of Pittsburgh. She is now
working towards the PhD degree in the same
department. Her research interests lie in the ar-
eas of computer architecture and security, with
a focus on memory attacks and defenses, ma-
chine learning attacks and defenses, and quan-
tum computers.

Yueqiang Cheng Yueqiang Cheng received
the Ph.D. degree from the School of Informa-
tion Systems, Singapore Management Univer-
sity, under the guidance of Prof. Robert H. Deng
and Associate Prof. Xuhua Ding. He is currently
the Head of Security Research at NIO. His re-
search interests include system security, trust-
worthy computing, software-only root of trust,
and software security.

Youtao Zhang Dr. Youtao Zhang joined the De-
partment of Computer Science of University of
Pittsburgh in January of 2006. He completed his
PhD in Computer Science at the University of
Arizona in 2002. Prior to joining the department,
he was an assistant professor in the Depart-
ment of Computer Science, University of Texas
at Dallas.His research interests are in the area
of the computer security, program analysis and
compiler optimization, and computer architec-
ture. He is the recipient of US NSF Career Award

in 2005, the distinguished paper award of the IEEE/ACM International
Conference on Software Engineering (ICSE) conference in 2003, the
most original paper award of the International Conference on Parallel
Processing (ICPP) conference in 2003. He is a member of the ACM and
the IEEE.

Jun Yang Jun Yang received her PhD degree
in Computer Science from the University of Ari-
zona. She is a professor in the Department
of Electrical and Computer Engineering, Uni-
versity of Pittsburgh. She is a recipient of US
NSF Career Award, and received several best
paper awards. She was a co-program chair of
IEEE/ACM International Symposium on Microar-
chitecture 2020. She has been included in the
Hall of Fame of MICRO and HPCA. Her re-
search interests include microarchitecture secu-

rity, memory technologies, GPU microarchitecture and power/energy
efficient computing.

