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Abstract—GPUs are foundational to modern AI workloads,
powering deep learning training and inference. As their de-
ployment becomes increasingly widespread, GPUs have also
emerged as attractive targets for attackers. To strengthen their
defenses, security measures, such as Address Space Layout
Randomization (ASLR), are deployed. However, in contrast to
the extensive research on CPU ASLR, in-depth studies of GPU
ASLR are still missing.

This paper presents the first comprehensive examination of
ASLR on NVIDIA GPUs. We propose two novel techniques to
thoroughly inspect memory mappings and collect randomized
GPU addresses at scale. Leveraging these techniques, we con-
struct a fine-grained GPU memory map and introduce entropy-
based metrics to quantify the strength of randomization. Our
study uncovers multiple previously unknown weaknesses of
ASLR on NVIDIA GPUs, including an unrandomized GPU
heap and correlated ASLR offsets between GPU and CPU
regions, which undermine the security of both GPU and
CPU ASLR. These findings have been confirmed by NVIDIA.
Furthermore, we conduct a practical case study demonstrating
how these weaknesses can be exploited to infer CPU ASLR
offsets from the GPU. Finally, we give mitigations to enhance
GPU ASLR security.

1. Introduction

Graphics Processing Units (GPUs) play a critical role
in artificial intelligence by accelerating the computation
required for training and running machine learning models.
Their massively parallel architecture consists of thousands
of smaller, more efficient cores that deliver high throughput.
This design is essential for training complex neural net-
works. Among all GPUs, NVIDIA GPUs have consistently
maintained a dominant position in the discrete GPU market,
often holding over 90% of the market share [11] for their
strong performance and extensive software ecosystem.

As NVIDIA GPUs become increasingly prevalent,
their security becomes more critical. To enhance security,
NVIDIA GPUs have adopted mechanisms originally devel-
oped for CPUs. One measure NVIDIA has implemented is
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Address Space Layout Randomization (ASLR) [46], which
has been applied to its GPUs to enhance security. ASLR
mitigates certain attacks by randomizing memory addresses
used by critical components, which makes it more difficult
for attackers to locate sensitive memory regions.

While CPU ASLR has been extensively studied [5],
[10], the implementation details and security implications
of GPU ASLR remain largely unexplored. Earlier research
by Zhang et al. [48] and Mittal et al. [29] concluded that
ASLR was not implemented on GPUs. Subsequently, Peng
et al. [38] were the first to implement ASLR in GPU allo-
cators, marking a significant development in GPU memory
security. Hoover et al. [18] and Cismaru et al. [6] exper-
imentally confirmed the presence of ASLR on NVIDIA
GPUs, but they did not conduct an in-depth analysis. Park
et al. [37] further discovered that GPU ASLR randomizes
code and data segments while leaving the CUDA GPU run-
time libraries without randomization. However, their work
primarily focused on GPU memory manipulation rather than
a comprehensive analysis of GPU ASLR. Consequently, a
complete examination of ASLR on NVIDIA GPUs is still
lacking.

To address this research gap, this paper conducts the
first comprehensive study of ASLR on NVIDIA GPUs.
Specifically, we first reconstruct the GPU memory layout
and then reverse-engineer the semantics of different memory
regions to obtain a comprehensive view of the GPU memory
layout. Next, we define two ASLR randomness metrics and
conduct experiments to collect and measure both the entropy
of GPU memory layout randomization and its correlation
with the corresponding CPU memory layout.

To achieve these, we must address several technical chal-
lenges. The first challenge is understanding the previously
unknown semantics of various memory blocks, which is
complicated by the black-box nature of NVIDIA GPUs. Sev-
eral memory regions are hidden from the user and cannot be
accessed or observed through conventional debugging tools
such as cuda-gdb. As a result, researchers must rely on re-
verse engineering to uncover the semantics of these regions.
The second challenge is efficiently collecting large volumes
of randomized addresses for ASLR analysis. Techniques
commonly used on CPUs, such as printing addresses with
printf or printk [5], are not applicable on GPUs because



critical regions such as CUDA library and .text segments
cannot be directly accessed or observed. An alternative
is to extract randomized addresses from GPU page tables
during every execution. However, this requires dumping the
entire GPU physical memory and scanning it page by page
to locate and decode page tables, which is prohibitively
inefficient and impractical at scale.

To address these challenges, we propose two novel tech-
niques: FlagProbe for in-depth analysis of GPU memory
layouts, and AnchorTrace for efficient collection of ASLR
addresses. These techniques enable a comprehensive analy-
sis of GPU memory layout and ASLR, revealing previously
unknown weaknesses in NVIDIA’s ASLR implementation.

Our findings. For GPU memory layout, all CUDA pro-
cesses share two large GPU memory regions and also map
a CPU kernel-space page into the user-privileged GPU
processes’ memory layout. In addition, both the CPU and
GPU map some physical memory pages into their respective
virtual address spaces, but with different permissions: the
GPU has RWX access, while the CPU is restricted to
RW. These shared memory regions among CUDA processes
facilitate covert channel attacks, and the GPU-CPU memory
sharing with differing permissions enables potential cross-
processor attacks—such as injecting GPU-executable code
from the CPU or crafting malicious data on the GPU to
compromise the CPU.

We also observe that even with GPU ASLR enabled, the
GPU heap remains entirely unrandomized. Most other GPU
memory regions (including .text and CUDA library) are ran-
domized with the same ASLR offset. Moreover, certain CPU
memory regions (e.g., glibc) exhibit a correlated ASLR
offset with GPU regions, and their difference only has 7
bits of entropy. This unrandomized heap and coarse-grained
randomization undermine GPU ASLR’s effectiveness; the
ASLR offset correlation further allows attackers to infer the
CPU ASLR offset from the GPU.

Building on these findings and the identified weaknesses
of GPU ASLR, we present a practical case study that
exploits a simple stack out-of-bounds (OOB) read to leak
the GPU ASLR addresses and then leverages the correlated
offsets to infer the CPU ASLR offset. This demonstrates
that GPU ASLR is not only limited in its own security, but
also undermines the ASLR protections of the CPU. There-
fore, this work, with its novel techniques, new findings,
and practical exploitation, further advances the state-of-the-
art of GPU ASLR. In summary, we make the following
contributions:

• New study. We conduct the first systematic analysis
of the ASLR on NVIDIA GPUs, including the com-
prehensive memory layout with semantics and ASLR
implementation.

• Novel techniques and framework. We propose novel
techniques for analyzing GPU memory layout and
ASLR, and have developed and open-sourced the
associated analysis framework at https://github.com/
ZJU-SEC/NvidiaASLR.

• New findings and weaknesses. We present seven new

findings that expose previously unknown weaknesses
in NVIDIA GPU memory layout and ASLR. These
findings have been confirmed by NVIDIA.

Ethics Considerations. We responsibly disclosed identified
ASLR weaknesses to NVIDIA, which acknowledged and
confirmed the issues in January 2025. Notably, one of our
findings—GPU address leakage from the hidden stack frame
(Finding-7)—has been fixed in the recently released driver
version 570.

To further reduce potential risks for users of affected
systems, we have anonymized all sensitive address values
presented in the paper to prevent direct misuse by mali-
cious actors. Additionally, our released artifact intentionally
omits key exploit details. Finally, we provide practical and
effective mitigation strategies to help users secure impacted
systems.

2. Background and Motivation

In this section, we present background knowledge re-
lated to NVIDIA GPUs and our motivation. We first describe
the GPU programming model in §2.1. We then introduce
how GPUs access memory §2.2. Finally, we illustrate our
motivations §2.3. We use NVIDIA-specific terminology for
descriptions.

2.1. NVIDIA GPU Programming Model

Modern GPUs adopt a parallel execution model tailored
for high-throughput, data-parallel tasks. NVIDIA GPUs, in
particular, follow the Compute Unified Device Architecture
(CUDA) programming model, which exposes the massive
parallelism of GPU hardware to developers through a C-
like interface.

Under this model, the CPU (host) and GPU (device)
maintain separate memory spaces and manage different page
tables. Computation is offloaded to the GPU by launching
kernels, which are special functions executed by a large
number of lightweight threads in parallel. Threads are orga-
nized hierarchically into warps (typically 32 threads), thread
blocks, and grids. Each thread executes the same kernel code
but operates on different data.

Importantly, from a systems and security perspective, the
GPU’s memory management, context switching, and kernel
execution are orchestrated by a combination of software
(CUDA runtime and driver) and hardware like GPU System
Processor (GSP), which is a RISC-V processor on newer
NVIDIA GPUs. These layers are largely closed-source and
operate in a separate address space from the CPU, posing
challenges for memory introspection and security analysis.

2.2. NVIDIA GPU Memory Access Model

NVIDIA GPUs are equipped with their own Graph-
ics Memory Management Unit (GMMU), which manages
virtual-to-physical address translation using a GPU-specific
page table format. This translation capability allows GPUs
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to resolve addresses for their own memory, CPU memory,
and even peer GPU memory.
GPU access GPU memory (video memory). When ac-
cessing its own physical memory, the GPU relies on its
GMMU and page tables. Specifically, the GMMU performs
a page table walk to resolve GPU virtual addresses into GPU
physical addresses. Once the translation is complete, the
GPU directly accesses the corresponding memory regions.
GPU access CPU memory (system memory). When ac-
cessing CPU memory, the GPU uses its GMMU to translate
virtual addresses into I/O virtual addresses (IOVA), which
are then used for DMA transactions. If the IOMMU is
disabled, the IOVA corresponds directly to the CPU physical
address. If enabled, the IOMMU further translates the IOVA
into the actual CPU physical address. Data transfer is then
performed via PCIe using the resolved address.
GPU access peer GPU memory (peer memory). In peer
memory access, the GPU uses its GMMU to resolve vir-
tual addresses to peer GPU physical addresses. The actual
memory access is performed using interconnect technologies
such as GPU Direct [42], NVLink [13], or NVSwitch [26],
which offer low-latency, high-bandwidth communication.

2.3. Motivation

NVIDIA GPUs are widely used for high-performance
computing tasks, such as deep learning and graphics ren-
dering. With the increasing computational demands, GPU
security has become more critical. Following the security
practices of CPUs, NVIDIA has adopted ASLR as a key
defense to reduce memory corruption risks. While CPU
ASLR has been extensively studied, the implementation of
GPU ASLR on NVIDIA platforms and its relationship with
CPU-side ASLR remain largely unexplored.

Existing studies of ASLR on NVIDIA GPUs are limited
in scope and depth. Some studies focus only on specific
memory regions’ layout, such as the stack [17] or CUDA
libraries [37], without comprehensively analyzing the overall
GPU memory layout. Others merely verify the presence of
ASLR on NVIDIA GPUs [48], [29], [18], [6], but do not
delve into its detailed implementation. Additionally, some
research assumes that GPU ASLR has already been by-
passed and focuses on side-channel [49] or memory corrup-
tion attacks [17], without analyzing the ASLR mechanisms
themselves. As a result, this paper aims to fill this gap
by systematically analyzing the design and effectiveness of
NVIDIA GPU ASLR. In particular, we investigate the GPU
memory layout, the design and implementation of ASLR,
its entropy, its correlation with CPU-side ASLR, and the
potential for information leakage or bypass.

To the best of our knowledge, although NVIDIA has
open-sourced its GPU kernel modules [8], the details of
memory management mechanisms for CUDA applications
remain mainly closed-source. These mechanisms are imple-
mented within the GPU System Processor (GSP) firmware,
which runs on a RISC-V processor inside the GPU [36].
Consequently, our analysis requires black-box reverse engi-
neering effort, which needs to be conducted without access
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Figure 1: FlagProbe technique for identifying segments’ semantics
in GPU VA space.

to internal documentation or source code. We believe this
paper is the first work to comprehensively reveal the
detailed structure of the GPU virtual address space
on NVIDIA platforms, including which memory segments
are mapped and how they are randomized. Building on
this knowledge, we further reverse-engineer the detailed
behavior of ASLR within the GPU virtual address
space. This understanding is crucial for both researchers
and adversaries, as it provides a foundation for analyzing
GPU memory behavior and exploring potential security
vulnerabilities.

3. Techniques Design and Implementation

This section presents the core techniques and the anal-
ysis framework developed in our work. We first introduce
the two key challenges we encountered during our analysis
and describe a corresponding technique designed to address
them in §3.1 and §3.2, respectively. We then present the
overall workflow of our analysis framework in §3.3, which
integrates these techniques to study GPU ASLR. Note that
this section focuses on methodology; the detailed results
are presented in §4 and §5, including the reconstructed
GPU memory layout and a thorough analysis of the ASLR
implementation.

3.1. FlagProbe: Semantic Reverse Engineering of
GPU Memory via Crafted Flag Probing

To understand the implementation of ASLR on black-
box NVIDIA GPUs, a necessary first step is to reconstruct
the GPU’s virtual memory layout before any randomization
is applied. Specifically, we must identify what memory
segments are mapped into the GPU virtual address space,
what each segment is used for, and in what order these
segments appear. However, this information has not been
documented or studied prior to our work. The layout and
semantics of various segments are hidden behind closed-
source drivers/firmware and runtime systems. While GPU



page tables reveal segment mappings and corresponding
addresses, they do not provide any semantic information
about the regions (e.g., .text, heap). Therefore, as a neces-
sary first step toward demystifying GPU ASLR, we aim to
reverse-engineer the semantic layout of GPU virtual memory
without randomization.

Challenge 1. Comprehensively identifying the semantics
of GPU virtual memory segments is non-trivial. First,
NVIDIA’s GPU software stack is largely a black box. The
vendor does not disclose how the runtime organizes memory
or labels memory segments internally. This forces us to
infer the layout using limited ground truth and without
official documentation. Second, traditional reverse engineer-
ing methods have limitations as many critical regions in
the CUDA address space are entirely invisible to users.
For example, segments such as system constant memory
store sensitive runtime-managed data and are inaccessible
via printf or tools like cuda-gdb. These memory regions
cannot be simply inspected using traditional debugging or
printing techniques. Third, even for memory regions that are
observable, the information retrieved via traditional print-
based methods is often unreliable. For instance, printing
a stack pointer in CUDA code typically yields an ad-
dress from the local stack, which is not recorded in the
GPU page tables. This local stack address is part of a
per-thread illusion optimized for fast access, and different
threads always print the same address [3]. In fact, the actual
memory that stores each thread’s stack resides in a separate
global stack region [17]. Thus, accurate semantic recovery
of memory segments requires low-level memory inspection
beyond what print-based methods can offer.

Our technique. To address these, we propose FlagProbe,
a technique that reverse-engineers the semantic meaning
of GPU memory segments through carefully crafted flags
and memory probing. A flag is a distinguishable constant,
instruction, or binary pattern that is strategically embedded
into GPU kernel code or naturally present in the memory.
These flags are specifically designed to match the expected
usage and visibility constraints of each memory segment.
During the kernel execution, we scan the raw GPU physical
memory to locate the runtime manifestation of these flags
and identify their physical addresses. By cross-referencing
these addresses with the GPU page tables, we can recover
the corresponding virtual addresses and associate them with
their functional semantics accordingly. In our design, we
prepare multiple flag candidates with low searching collision
probability. To further confirm correctness of a flag’s loca-
tion when a collision happens, we use different flags across
multiple executions to cross-validate that the corresponding
memory consistently changes.

As shown in Figure 1, we use the system constant
memory region as an illustrative example. This region is a sen-
sitive, undocumented memory segment managed internally
by the CUDA runtime and cannot be directly accessed or
modified by user code. However, by disassembling compiled
CUDA kernel functions, we observed that each kernel’s
entry point consistently includes the following instruction

sequence: MOV R1, c[0x0][0x28]; IADD3 R1, R1, -0x38, RZ.
These instructions load the stack base address from a fixed
offset within system constant memory and allocate stack
size. We figure out the virtual memory region for the system
constant memory through four steps. ① While breakpoints
cannot be inserted between these instructions, we place a
breakpoint at the subsequent instruction and use cuda-gdb
to capture the runtime value of register R1. By reversing
the calculation, we infer that the original value read from
system constant memory was R1+0x38. ② We then scan GPU
physical memory to locate this value, thereby recovering
its physical address. ③ Using page tables extracted from
GPU physical memory, we map this physical address back
to its GPU virtual address (segment 1 in Figure 1). ④ Now,
we know that segment 1 in the virtual memory is for the
system constant memory. If there is a collision in the memory
for the searched flag, we will select another candidate flag,
such as the value extracted from the instruction MOV R11,
c[0x0][0x110], to ensure the uniqueness and correctness of
the searched flag.

Similarly, we identify different memory segments using
customized flags and reverse engineering techniques. Below
are the strategies we employed for each segment:

• .text: We identify the GPU .text segment by locating
a known instruction pattern. For example, the high
64 bits of the instruction MOV R1, c[0x0][0x28] is
0x00000a0000017a02, which we use as a dedicate flag
to locate the code segment in GPU virtual memory.

• CUDA library: Since printing addresses of CUDA
internal functions (e.g., memset) using printf yields
non-address values (e.g., 0x6e0), we cannot locate these
functions directly. Instead, we use the call instruction
opcode 0x7943 as a flag. By scanning the .text segment
for the 128-bit call instructions and decoding their
target addresses ([33:80]) [25], we are able to identify
the addresses of dynamically linked CUDA library
functions.

• Heap, global stack, user-declared constant memory:
For those user-accessible segments, we insert a known
constant flag such as 0xdeadbeef in kernel code. We
then search the physical memory for this flag and
resolve the associated virtual addresses using the GPU
page tables.

• CPU-side memory mapped by GPU: We identify
these regions in three steps. First, we parse GPU page
tables to extract their physical mappings (which cor-
respond to intermediate physical addresses when the
IOMMU is enabled). Second, we traverse the CPU
and IOMMU page tables to recover the actual CPU
virtual addresses. Finally, we correlate these addresses
with /proc/<pid>/maps entries to infer their semantic
purpose.

• Other segments: Remaining unclassified memory re-
gions are examined manually. Through raw binary in-
spection, we recognize structures such as string tables,
function tables, and process-shared memory regions.

This flag-guided probing approach allows us to reliably
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Figure 2: AnchorTrace technique for collecting different random-
ized segment address. The memory ❶ is a fixed address, so we
can use it as an anchor to trace other randomized addresses. The
offset refers to the relative offset within the corresponding memory
region. All addresses are 64-bit aligned.

identify even hidden or undocumented memory segments,
achieving a comprehensive semantic mapping of GPU vir-
tual memory layout that is unknown beforehand. For com-
pleteness, We document a set of failed reverse-engineering
attempts and more details in the appendix appendix A.
Although not directly contributing to our final technique,
these cases may offer insights and practical guidance for
future efforts.

3.2. AnchorTrace: Recursive Pointer Tracing from
Anchor Memory to Collect Randomized Addresses

After recovering the GPU virtual memory layout in a
non-randomized setting using FlagProbe described in 3.1,
we proceed to analyze how this layout is transformed under
ASLR. Specifically, we aim to systematically analyze how
the GPU ASLR affects the layout of memory segments.
This includes examining whether ASLR changes the relative
ordering of segments, whether it applies coarse- or fine-
grained randomization, and how much entropy it introduces
into each memory region. To conduct this analysis, we
must collect a large number of runtime addresses from
repeated executions of the same program. On the CPU side,
prior work typically executes the same binary millions of
times [5], using in-program printf statements to expose
memory segment addresses directly during each run. These
addresses are then collected and analyzed statistically to
evaluate the randomness and entropy of each segment. Ap-
plying the same methodology to NVIDIA GPUs, however,
introduces several unique challenges.

Challenge 2. It is highly challenging to efficiently collect
memory segment addresses across repeated GPU executions.
First, many GPU memory segments are inaccessible through
conventional CUDA kernel code (by printing the address
of a variable/function with printf). As discussed in §3.1,
some segments such as system constant memory and CUDA
library are entirely hidden from user code. Although we can
reverse-engineer and locate these segments using FlagProbe,
we cannot print their base addresses at runtime during
each execution. On the other hand, addresses printed by

printf in CUDA kernel code are also unreliable, such as
the local/global stack addresses.

Another approach is to extract segment addresses from
the GPU page tables during every sampling, but this method
is prohibitively inefficient in practice. CPUs expose dedi-
cated registers (e.g., CR3) that point to the root of their
page tables. In contrast, NVIDIA GPUs either do not expose
such information or keep it undocumented. In addition, the
physical location of the GPU page table root varies across
program executions. As a result, we must dump the entire
GPU physical memory (24 GB on an RTX 4090), scan it
page by page to locate the page table pages, and walk the
hierarchy to reconstruct the address mappings. This process
takes over one minute per sample, while analyzing ASLR
entropy requires collecting more than 100,000 such samples,
totaling over 1,666 hours of processing time. Furthermore,
launching each CUDA program also incurs significant over-
head due to the slow GPU context initialization and cross-
processor communication. As a result, per-run sampling is
significantly slower on GPUs than on CPUs, which makes
large-scale address collection impractical on GPUs.

Our technique. To address these limitations, we propose
AnchorTrace, a pointer-chasing-based technique tailored for
collecting randomized GPU addresses efficiently. The key
idea is to start from a known, non-randomized anchor region
and recursively traverse memory by following pointer values
stored within each region. This turns the problem into
identifying memory regions that contain valuable pointers
and segment addresses.

We begin with a one-time reverse-engineering effort,
using GPU page tables and memory dumps, to identify
all valuable memory regions and the offsets inside them
that contain pointers. Since ASLR only shifts the base
address of a memory block while preserving the internal
pointer offsets, we performed this reverse-engineering in a
cuda-gdb environment where ASLR is disabled. To reliably
extract pointers from raw memory, we rely on two features:
pointers are typically 8-byte aligned and often carry the
prefix 0x7fff.

We choose the system constant memory as our reverse-
engineering starting point, because we find it contains sev-
eral pointer values that are unique within physical memory
during the FlagProbe analysis. For example, offset 0x140
holds the CUDA kernel entry point address in the .text
segment, as well as pointers to other memory regions. Once
the initial regions were identified, we apply both forward and
backward pointer-chasing strategies. The forward approach
identifies pointers contained within the current memory
region and follows them to discover additional regions they
reference. Conversely, the backward approach starts from
the virtual address of the current region and scans the raw
memory dump for pointer values matching this address,
thereby locating more other regions that contain references
to it. Together, these complementary methods progressively
construct a memory graph, where nodes represent memory
regions and edges denote pointer relationships, as illustrated
in Figure 2.



TABLE 1: Overview of experiment settings we test.
GPU OS CUDA Driver

3070Ti Ubuntu 20.04 11.8 560.35.03
3070Ti Ubuntu 20.04 12.1 560.35.03
4090 Ubuntu 22.04 12.1 560.35.03
4090 Ubuntu 22.04 12.6 560.35.03

4090 laptop Ubuntu 24.04 12.6 560.35.03
4090 laptop Ubuntu 24.04 12.6 570.133.07

A key insight is that although most memory regions
are randomized under ASLR, a specific region (memory ❶)
remains fixed across executions 1 and can be served as a
reliable anchor for pointer chasing, as illustrated by solid
arrows in Figure 2. For instance, from this anchor (memory
❶), we can directly retrieve the addresses of the system
constant memory and .text segments at offsets 0xb8 and
0xc0, respectively. The pointer at offset 0x88 leads to another
region that contains pointers to the global stack and heap
segments. Consequently, using this memory graph, we can
recursively retrieve the addresses of all memory segments.
We implement this pointer-chasing logic in a custom CUDA
kernel, which is repeatedly executed to extract randomized
segment addresses at runtime. Since all offsets and pointers
are known, each kernel execution simply follows a fixed
dereference sequence. For example, suppose a fixed anchor
region sits at address 0x20000000. The kernel first reads an
8-byte value at 0x20000080 (using the printf statement) to
obtain the address of memory ❷ (e.g., 0x7fffaaaa1000). It
then reads the 8-byte value at 0x7fffaaaa1000 + 0x58 to
obtain the address of memory ❹. The kernel repeats this
dereference chain recursively, following the known offsets
until all target segment addresses are resolved. In this way,
no additional memory dumps or runtime reverse-engineering
are required.

Instead of exhaustively scanning GPU physical memory
or reconstructing full page tables for every sample, Anchor-
Trace selectively inspects a small set of critical regions and
extracts specific offsets within them to recover all relevant
segment addresses. This design significantly reduces collec-
tion overhead. In our experiments, AnchorTrace executes
100,000 instances of the collection kernel and recovers all
segment addresses in just 9 hours. This achieves a 185×
speedup over page-table-based extraction, which takes 1666
hours.

3.3. Implementation

Leveraging our two proposed techniques: FlagProbe and
AnchorTrace, we design and implement a framework to
systematically analyze ASLR behavior on NVIDIA GPUs.
It consists of three main steps.
Step 1: Dumping GPU memory and extracting GPU
page tables. We begin by executing a CUDA program under
cuda-gdb after disabling ASLR and setting a breakpoint

1. We initially tried to collect randomized addresses using the page table
approach. Although we only collected 100 times, which is far from the
number necessary for entropy analysis, we still find that there is a segment
in the lower address space that are not randomized.

at the kernel’s return point to suspend execution. At the
breakpoint, we use the Dumper tool from prior work [49]
to dump the entire GPU physical memory. The resulting
memory dump includes GPU page tables and other critical
data structures. We then extract the page tables from the
memory dump. The existing tool extractor [1] can parse
page tables on earlier architectures, but it fails to handle cer-
tain mappings such as GPU-mapped CPU physical memory,
and does not support the Ada architecture (e.g., RTX 4090).
To address these limitations, we extend the tool with over
1,600 lines of additional code. This enhanced tool allows us
to extract a frozen snapshot of the GPU page tables from
the physical memory dump.

Step 2: Identifying memory segment semantics. We next
reconstruct a high-level view of the GPU virtual memory
layout from dumped page tables. By aggregating all page
table entries, we merge contiguous regions with identical
permissions into unified memory segments—an approach
inspired by the Linux kernel’s vm_area_struct [9]. This
abstraction simplifies subsequent analysis. However, the re-
sulting layout lacks information about the type of content
(e.g., text, heap) mapped to each region. We apply FlagProbe
to identify the semantics of each segment and uncover
hidden memory regions such as system constant memory and
CUDA library segments. This semantic understanding serves
as a necessary baseline for analyzing how ASLR transforms
the memory layout.

Step 3: Analyzing ASLR Behavior. To investigate how
ASLR is implemented, we leverage AnchorTrace to ef-
ficiently collect the addresses of key memory segments
across multiple executions. Specifically, we identify critical
memory regions (as shown in Figure 2), and develop a
CUDA kernel that traverses pointer chains starting from
the fixed memory region (❶) to trace the locations of other
randomized regions (❷, ❸ and ❹). From these four regions,
we extract addresses of different segments using identified
offsets. We execute the kernel 100,000 times and collect the
full set of randomized addresses in each run. This large-
scale dataset allows us to perform a statistical analysis of
the address distributions for each segment. We use this
analysis to characterize ASLR behavior, estimate entropy,
and identify potential weaknesses.

We will introduce our analysis results in the following
sections. Unless otherwise specified, all addresses presented
in this paper are obtained from experiments on an NVIDIA
GeForce RTX 4090 laptop GPU (Ada architecture). The ex-
periments are conducted on Ubuntu 24.04 with Linux kernel
version 6.11.0. The software environment includes CUDA
12.6, NVIDIA’s open-source driver version 560.35.03, and
glibc 2.39. The hardware consists of a 4090 laptop GPU
with 16 GB of VRAM, an Intel core i9-14900HX processor,
and 32 GB of CPU memory. Moreover, we also conduct
experiments on different GPUs and CUDA versions, and all
the findings are reproduced, as shown in Table 1.



TABLE 2: Overview of the complete GPU memory layout without ASLR. These results are based on experiments conducted on an
NVIDIA RTX 4090 GPU 24GB with CUDA version 12.6. SYS means that it maps CPU physical memory. VID means that it maps GPU
physical memory. The * means the GPU and CPU have the same virtual address that maps the same GPU/CPU physical address.

Range Type Region name Description
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0x200000000 - 0x200400000 VID unknown unknown data structure
0x200400000 - 0x200600000* VID /dev/nvidia0 NVIDIA device file region for GPU #0
0x200600000 - 0x203600000* SYS /dev/nvidiactl /dev/nvidiactl from CPU physical memory
0x203600000 - 0x205c80000 VID process shared memory physically shared by all GPU processes
0x205c80000 - 0x205c90000 SYS 64 KB kernel page CPU mem. shared by all GPU processes
0x205c90000 - 0x206009000 VID process shared memory physically shared by all GPU processes
0x206400000 - 0x206800000* SYS /dev/nvidiactl /dev/nvidiactl from CPU physical memory
0x206800000 - 0x206a00000* SYS /dev/nvidia-uvm /dev/nvidia-uvm from CPU physical memory
0x206a00000 - 0x206c00000 VID unknown contains pointers to sensitive regions
0x206c00000 - 0x206e00000 SYS /dev/zero this region maps to CPU VA 0x7ffff0a00000
0x206e00000 - 0x207a00000 VID heap heap space for CUDA GPU runtime

0x10000000000 - 0x10000200000 VID all zero region all bytes are zero
0x10002000000 - 0x10002200000 VID all zero region all bytes are zero

ro
nd

om
iz

ed
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s

0x7fffa2000000 - 0x7fffbac00000 VID global stack actual stack region for CUDA GPU runtime
0x7fffbac00000 - 0x7fffbae00000* SYS /dev/zero /dev/zero from CPU physical memory
0x7fffbae00000 - 0x7fffbb000000 VID all zero region all bytes are zero structure
0x7fffbb000000 - 0x7fffbb601000* SYS /dev/zero /dev/zero from CPU physical memory
0x7fffcec00000 - 0x7fffcee00000 VID user-declared constant strings & constant variables defined in kernel
0x7fffd0000000 - 0x7fffd3c00000 VID unknown unknown data structure, contains heap pointers
0x7fffd4000000 - 0x7fffd4400000 VID system constant memory CUDA internal constant memory
0x7fffd4400000 - 0x7fffd4a00000* SYS /dev/nvidiactl /dev/nvidiactl from CPU physical memory
0x7fffd4a00000 - 0x7fffd4c00000 VID func and string table CUDA library function ptr and string ptr table
0x7fffd4e00000 - 0x7fffd5000000 VID CUDA library CUDA library code for GPU runtime
0x7fffd5000000 - 0x7fffd5200000* SYS /dev/nvidiactl /dev/nvidiactl from CPU physical memory
0x7fffd5200000 - 0x7fffd5400000 VID .text user-provided CUDA kernel code
0x7fffd5400000 - 0x7fffd5600000* SYS /dev/zero /dev/zero from CPU physical memory
0x7fffd5600000 - 0x7fffd5a63000* SYS /dev/nvidiactl /dev/nvidiactl from CPU physical memory

4. Comprehensive GPU Memory Layout

In this section, we conduct a detailed analysis of the
GPU virtual memory layout using the reverse engineering
technique introduced in §3.1. We first reconstruct the GPU
process address space in §4.1, identify the semantics of
each memory region, and uncover several undocumented
segments. Next, in §4.2, we examine the relationship be-
tween GPU and CPU memory layouts, highlight architec-
tural correlations, and show that several memory regions can
be exploited across processor boundaries.

4.1. Memory Layout on GPU

Using the FlagProbe technique described in §3.1, we
systematically reverse-engineer the semantics of memory
segments in the GPU’s virtual address space. Table 2 sum-
marizes the results, presenting the address ranges, content
types, and corresponding functionalities of each segment. To
our knowledge, this is the first comprehensive view of the
GPU process memory layout.

Specifically, the GPU’s virtual memory layout comprises
several critical segments. The .text region contains the
compiled CUDA kernel binary. The CUDA library provides
important internal runtime functions, such as a CUDA-
specific version of printf, which differs from the one in
glibc. Additionally, the local stack and heap segments
support thread-local execution contexts, while the global
stack stores the concatenated local stacks of the 32 threads

in a warp. Each thread allocates memory in 8-byte units [34].
This means that the first 32*8 bytes of global stack store the
first 8 bytes local stack for 32 threads within a warp and so
on. Moreover, the layout also includes mappings for critical
metadata, such as function & string table and system
constant memory. The layout incorporates mappings to
CPU-side device memory (system memory) as well. These
mappings include shared regions such as /dev/nvidia-uvm,
/dev/zero, and /dev/nvidiactl, which facilitate interaction
between the two processors. In addition, there are also three
unknown regions we cannot determine the functions since
they contain only a few numbers of values like 0x390100
and pointers.

Among all the GPU-mapped regions, we identify two
memory regions with unusual properties that may pose
security risks. These regions are shared across all running
CUDA processes, making them susceptible to covert chan-
nel and code injection attacks. We find that two memory
regions, each approximately 42MB in size and located
at 0x203600000-0x205c80000 and 0x205c900000-0x206009000,
are shared across all CUDA kernel processes. As shown in
the “process shared memory” entry in Table 2, these regions
map the same physical memory to identical virtual addresses
across processes. They are configured with RWX permission
and exhibit volatile behavior. Any write operation to these
regions modifies their contents, and these changes persist
even after the corresponding CUDA process terminates.
This persistence enables potential attack vectors like covert



channel attacks and code injection exploits. For instance,
one process can inject malicious GPU binary code into these
fixed-address regions, and another process can later execute
it by exploiting vulnerabilities to hijack control flow.

Finding-1: All CUDA processes share two large
memory regions with RWX permission (marked as
process shared memory in Table 2), which have
identical GPU virtual and physical addresses. This
facilitates covert channel and code injection attacks.

Another notable finding is that a 64KB memory region
mapped to CPU physical memory is shared across all CUDA
processes. The range of this region is from 0x205c80000 to
0x205c90000, as named 64 KB kernel page in Table 2. Both
its GPU virtual address and CPU physical address remain
consistent across different CUDA kernel executions. More
critically, this physical memory is not mapped into user
space on the CPU. Instead, it resides in kernel space. This
design raises a significant security concern: CUDA programs
executing with user-level privileges on the GPU are able to
directly read from and write to kernel pages on the CPU.
Such access potentially bypasses conventional system-level
access control mechanisms. Although the exact purpose of
this 64KB region remains unclear, binary inspection reveals
the presence of structured binary data. Moreover, we further
confirmed through experiments that overwriting this region
within CUDA kernels does not cause program crashes or
trigger any observable execution errors. This observation
suggests that the region does not store control data. We
hypothesize that it serves as an internal data exchange buffer
between the GPU and the CPU.

Finding-2: All CUDA processes run with user-level
privileges on the GPU but map and share the same
64KB memory page located in CPU kernel space
(marked as the 64 KB kernel page in Table 2). Such
mapping potentially bypasses system-level protection
mechanisms and results in unauthorized memory ac-
cesses.

4.2. Relationships Between GPU and CPU Memory
Mappings

We analyze the interactions between CPU and GPU
memory by comparing the GPU address space we reverse-
engineered with the CPU-side virtual memory layout. The
CPU memory layout is obtained from /proc/<pid>/maps,
and the correlation is shown in Figure 3.

CUDA applications include additional memory regions
in their CPU-side address space that are not present
in traditional CPU-only programs. These regions include
memory-mapped device files such as /dev/nvidiactl and
/dev/nvidia-uvm. The GPU driver uses these virtual files
for device control and unified memory management. On the
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Figure 3: CPU and GPU memory layouts without ASLR and their
correlation. The left and right sides show their virtual mappings;
aligned regions share virtual addresses. Yellow boxes represent
regions backed by physical memory. The white boxes (reserved)
are unmapped, meaning they are assigned virtual addresses but do
not have physical memory backing.

CPU side, these regions typically appear with RW-S permis-
sions, indicating readable, writable, and shared mappings.
Interestingly, we observe that the physical memory pages
backing these CPU regions are also mapped into the GPU
virtual address space. What’s more, these mappings use the
exact same virtual addresses on both the CPU and GPU
sides. This implies a strong correlation between the CPU
and GPU virtual addresses2.

In addition, we find a number of anonymous virtual
memory regions (marked as reserved in Figure 3) in the
CPU address space that are marked with permission ---p,
suggesting that they reserve virtual address ranges without
being backed by physical memory. However, we discover
that these virtual addresses also appear in the GPU page
tables with valid mappings to GPU physical memory. This
observation provides further evidence of a coordinated vir-
tual address design between CPU and GPU, and it inspired
our later investigation into whether GPU ASLR might be
influenced by CPU-side ASLR.

We also identify a GPU physical memory region
that is mapped into both CPU and GPU virtual address

2. This has also inspired us to explore the correlation between GPU-side
ASLR and CPU-side ASLR.



spaces using identical virtual addresses. This region, named
/dev/nvidia0 in Figure 3, spans 2MB from 0x200400000
to 0x200600000. On the CPU side, this region is mapped
with standard RW-S permissions and on the GPU side it
is mapped with RW permissions. However, the GPU page
table format lacks an explicit execute (X) bit [7], so the
same region is implicitly executable on the GPU side. This
permission asymmetry creates a potential security risk. For
example, attackers could write GPU-executable payloads
through the CPU’s writable mapping to help GPU code
injection attacks. Alternatively, they may craft controlled
data such as compromised stacks from the GPU side to aid
CPU-side vulnerability exploitations.

Finding-3: The CPU and GPU share portions of
their virtual addresses, reflecting a strongly corre-
lated address space design. Some shared regions,
such as /dev/nvidia0 in Table 2, present inconsistent
permissions. These regions allow code injection into
GPU space from the CPU side and data injection
from the GPU into CPU-accessible memory, creating
cross-processor attack surfaces.

5. GPU Address Space Layout Randomization

In this section, we present a detailed analysis of GPU
ASLR using the technique introduced in §3.2. Our goal is
to evaluate the randomness and effectiveness of GPU ASLR
while investigating its security weaknesses. To achieve this,
we treat the collected randomized addresses as discrete
data points and systematically analyze their randomness
using well-defined metrics. We first introduce the evaluation
metrics in §5.1. These metrics allow us to measure the
randomness of both individual memory segments and their
inter-dependencies. Next, we present our findings on GPU
ASLR implementation in §5.2, detailing how randomization
is applied to GPU memory layouts. Finally, we investigate
the relationship between GPU and CPU ASLR in §5.3.

5.1. Analysis Targets and Metrics

Targets. To evaluate the implementation and effectiveness
of GPU ASLR, we focus on memory segments critical
to kernel execution and potential exploitation, specifically
code and data regions such as the heap, stack, and .text.
Although the GPU address space includes mappings of
CPU device memory, we exclude them from our analy-
sis as they do not directly affect kernel logic. To further
assess cross-processor ASLR behavior, we also examine
corresponding CPU-side memory regions—including stack,
heap, and shared libraries—to identify address correlations
and potential security weaknesses in memory management
between CPU and GPU.
Metrics. To evaluate the effectiveness of GPU ASLR, we
adopt entropy-based metrics grounded in information the-
ory [24]. While traditional metrics like Shannon entropy [43]

or NSB entropy [32] quantify randomness in general sys-
tems, they offer limited insight into the specific behavior
of address space randomization. Therefore, we employ two
specialized metrics inspired by prior ASLR research [5] to
evaluate the randomness: Absolute Entropy and Correlation
Entropy.

The Absolute Entropy quantifies the degree of random-
ization for a single memory object by measuring which bits
of its address vary across runs. This metric highlights the
granularity of the randomization. For example, if a memory
region’s address changes between bit positions 26 and 44,
its Absolute Entropy is 19 bits, indicating a randomization
granularity of 226. Furthermore, if another memory region
exhibits the same bit variation range (also [26:44]), it sug-
gests that both regions are randomized within the same
address block, revealing possible alignment in the memory
layout.

Formally, let a(n) be the n-th observed address and a
(n)
i

its i-th bit. The Absolute Entropy is defined as:

Habs(a) =
m∑
i=1

δi, δi =

{
1, if ∃n, n′ : a

(n)
i ̸= a

(n′)
i

0, otherwise

where m is the address bit width. This metric captures
both the range of address variation and the granularity of
randomization.

The Correlation Entropy, on the other hand, assesses
whether two memory regions—within the GPU or across
CPU and GPU—maintain a fixed spatial relationship across
runs, which could indicate structural leakage or ASLR
weaknesses. Rather than directly comparing the raw bitwise
differences between addresses, which may be influenced by
the absolute value and thus mislead the analysis, we focus
on the entropy of their offsets. For instance, consider two
addresses fixed at 0xff00 and 0x00ff in every randomiza-
tion. Measuring changed bits directly would suggest a 16-
bit difference, failing to capture the constant relationship
between them. However, computing the offset between these
addresses yields a constant value 0xff00 - 0x00ff = 0xfe01,
indicating a fixed correlation despite address randomization.

Specifically, let x(n) and y(n) be the n-th observed
addresses of two memory objects, and define the offset
as o(n) = x(n) − y(n). Then, the Correlation Entropy
Hcorr(x, y) is defined as the Absolute Entropy of the offset:

Hcorr(x, y) = Habs(o).

This metric accurately captures the randomness of the rela-
tive positions between the two regions.

5.2. Absolute Entropy

We analyze the Absolute Entropy (Habs) and the bitwise
variation for various memory objects in both GPU and CPU
address spaces. The results are summarized in Table 3.

GPU-side objects. On the GPU, most memory objects
except the heap and local stack exhibit consistent entropy
values of 20 bits, with changed bits spanning positions 25



(a) The correlation entropy between different GPU objects. Both the X-
axis and Y-axis represent GPU objects.

(b) The correlation entropy between different CPU and GPU objects. The
X-axis represents CPU objects, and the Y-axis represents GPU objects.

Figure 4: Correlation entropy results of GPU ASLR. Smaller values are depicted with darker colors, indicating a lower degree of
randomization that makes it easier for one object to predict another.

TABLE 3: Absolute Entropy (Habs) and changed bit range for
various CPU and GPU memory regions. The Habs means the
number of changed bits of an object with randomization.

Memory object Habs Changed Bits

GPU

local stack 19 [26, 44]
global stack 20 [25, 44]

.text 20 [25, 44]
system constant mem 20 [25, 44]

heap 0 None
user-declared constant 20 [25, 44]

func & string table 20 [25, 44]
GPU library 20 [25, 44]

CPU

env variables 22 [12, 33]
stack 30 [4, 33]

global variables 34 [12, 45]
shared memory 33 [12, 44]
heap (16B size) 41 4, [6, 45]
CUDA library 34 [12, 45]
glibc (system) 24 [21, 44]

.text (main) 34 [12, 45]

to 44. This implies that GPU ASLR is applied with a coarse
granularity of 225. Notably, the heap region is an exception,
showing zero entropy: its address remains fixed across all
executions. This indicates that the heap is completely deter-
ministic, lacking any address randomization.

CPU-side objects. In contrast, CPU-side objects demon-
strate significantly higher entropy and broader ranges of bit
variation. For example, the address of glibc_system exhibits
24 bits of entropy (bit 21 to 44), and the stack reaches 30
bits (bit 4 to 33). Even the region with the lowest entropy
(i.e. env variables) still achieves 22 bits, exceeding the
entropy of all GPU regions.

As nearly all objects vary across exactly the same bit
range [25, 44], we hypothesize that these memory objects

are randomized together as part of a single block. This may
raise issues that the random address used for one object
may implicitly determine the layout of the others. However,
Absolute Entropy alone cannot verify this hypothesis, as
it only reflects per-object variation. We substantiate this
hypothesis in §5.3 using Correlation Entropy.

Finding-4: GPU heap memory exhibits no address
randomization, while other GPU regions have limited
entropy (20 bits) and identical changed-bit ranges.
This suggests a coarse randomization strategy on the
GPU, which makes it easier for attackers to predict.

5.3. Correlation Entropy

We analyze the Correlation Entropy (Hcorr) of different
GPU memory objects as well as the Hcorr between GPU and
CPU memory objects. The result is presented in Figure 4.
GPU and GPU objects correlation. As shown in the left
part of the Figure 4a, most GPU memory objects exhibit
zero entropy in their offsets relative to one another, except
for the heap and local stack. This demonstrates that GPU
memory randomization is highly deterministic for most
objects, which remain fixed across executions. Moreover,
this indicates that all GPU memory regions, except the
heap and local stack, share the same randomization offset.
As a result, if any single address is leaked, the remaining
addresses can be reliably inferred using their relative offsets.

Finding-5: The GPU ASLR is collectively random-
ized, with most memory regions sharing the same
randomization offset. This design allows attackers to
infer the addresses of most other memory regions
once a single address is leaked.



GPU and CPU objects correlation.The right part of
the Figure 4b reveals the correlation entropy between GPU
and CPU memory objects. Most GPU-CPU memory object
pairs show high entropy values exceeding 33 bits, suggesting
strong randomization and low correlation. However, a no-
table exception is observed with the glibc memory region
on the CPU. The correlation entropy between glibc and
most GPU memory objects (excluding the heap) is as low
as 7 bits. This low entropy indicates a strong correlation
between these addresses, enabling attackers to predict the
glibc addresses on the CPU using leaked GPU addresses.
Since glibc contains critical functions (e.g., system) and ex-
ploitable ROP gadgets, this predictability poses a significant
security risk.

Finding-6: The offsets between CPU glibc and GPU
memory objects change by as little as 7 bits during
randomization. This strong correlation allows attack-
ers to predict glibc addresses on the CPU using
leaked GPU addresses.

6. Exploiting GPU ASLR

Previous sections reveal weaknesses in NVIDIA GPU
ASLR. This section demonstrates how these weaknesses can
be exploited to break the GPU and CPU boundary and leak
sensitive CPU addresses. In the following, we first define the
threat model, outlining the attacker’s goal and capabilities
in §6.1. Next, we detail our approach to bypass GPU ASLR
and further bypass CPU ASLR in §6.2. Finally, we present
a case study by using an example CUDA program, showing
that it is practical to guess the system function address
exploiting GPU-CPU ASLR correlation in §6.3.

6.1. Threat Model

Attacker goal. We assume the attacker is an unprivileged
user of an AI model inference service [14] deployed on
a server equipped with NVIDIA GPUs. There is an OOB
read memory vulnerability in the underlying CUDA kernel
implementations. These OOB bugs are common in machine
learning frameworks [15], [47], [22]. The attacker aims
to break GPU ASLR reliably by leaking sensitive address
information from the GPU via a common OOB bug in
CUDA kernel. The primary goal is to reliably defeat GPU-
side ASLR by leaking sensitive GPU virtual addresses via
the OOB defect. Using leaked GPU addresses, the attacker
may further infer critical CPU-side addresses (e.g., the glibc
base) despite low GPU–CPU address correlation, thereby
obtaining the address information necessary to enable con-
ventional CPU-side exploits like return-oriented program-
ming (ROP). We do not assume a complete CPU exploitation
chain, since address leakage is treated as a primitive that en-
ables subsequent CPU attacks, whose concrete construction
depends on CPU-side vulnerabilities. The CPU side attack
methods have been extensively explored in previous work
and lie outside this paper’s scope.

Attacker capabilities. We assume the attacker can interact
with the deployed AI model via a standard inference API
by repeatedly sending crafted inputs and observing the cor-
responding outputs. This aligns with practical inference-as-
a-service scenarios, where users submit inputs (e.g., images
or text) and receive model outputs [4]. We further assume
the OOB read vulnerability in the CUDA backend can be
triggered by malformed inputs. For example, a carefully
constructed image with extreme dimensions may exploit
insufficient input validation in CUDA image processing ker-
nels [17], [35]. Moreover, the attacker can launch multiple
queries to the model, and unless a crash occurs, all queries
are processed within the same long-lived GPU process. If a
crash is triggered, we assume the server includes an auto-
restart mechanism [40] that reinitializes the model service
(e.g., by restarting the process). This allows the attacker to
perform multiple attempts.
System defenses. On the CPU side, we assume that common
system-level defenses are enabled, including stack canaries,
Write XOR Execute (WˆX), Position-Independent Executa-
bles (PIE), and other default protections. Specifically, the
system is configured with randomize_va_space=2, which
corresponds to full ASLR as used by default in Ubuntu
and other modern Linux distributions. These defenses make
direct code injection or ROP-style attacks infeasible unless
address space information is first leaked. On the GPU side,
we assume that NVIDIA’s GPU ASLR mechanism is active.
However, due to its limited entropy and incomplete random-
ization coverage, GPU ASLR provides weaker protection
in practice. As such, the attacker targets the GPU as the
accessible entry point, leveraging GPU vulnerabilities to
break inter-processor isolation and subsequently leak CPU-
side address information, which is a challenging task from
the CPU side alone in modern systems.

6.2. Bypassing ASLR

To break the GPU-side ASLR and subsequently the
isolation between the GPU and CPU, the attacker must
first leak a randomized address within the GPU memory
space. Leveraging this leaked address and Finding-6 (which
reveals that the entropy between GPU and CPU virtual
address spaces is limited to only 7 bits), the attacker can
infer the corresponding CPU address (e.g., glibc base). This
section details how the attacker achieves these two steps, i.e.,
bypassing GPU and CPU ASLR.
Bypassing GPU ASLR. While we have presented the
limitations of GPU ASLR, leaking a randomized address
within the GPU address space remains non-trivial in prac-
tice. First, traditional OOB stack operations cannot access
return addresses: due to aggressive compiler optimizations,
CUDA kernels compiled without debugging information
(i.e., without -G -g) are heavily inlined. As a result, user-
defined functions are flattened into a single kernel body,
eliminating conventional function calls and their correspond-
ing stack frames. Consequently, there are no return addresses
pushed onto the stack during kernel execution. Second,
although user code may invoke CUDA library functions



such as printf, these calls do not store return addresses
on the stack either. Instead, return addresses are held in
specific registers (e.g., R20, R21) according to NVIDIA’s
internal calling convention. Third, OOB reads from other
user-accessible memory regions (e.g., heap or user-declared
constant memory) are generally ineffective for leaking stable
randomized addresses, as the memory areas containing such
sensitive information (regions in Figure 2) are far away from
these user-controlled regions.

To overcome these limitations, we reverse-engineered
the CUDA memory layout and discovered a hidden stack
frame located prior to the regular kernel function stack,
suggesting the presence of undocumented initialization logic
executed before the user-defined CUDA kernel begins. Al-
though this hidden frame does not store return addresses,
it exhibits a structured layout in which several fields at
fixed offsets contain pointers to the randomized .text and
CUDA library segments. Through differential testing, we
observed that the number of bytes required to reach this
hidden frame remains constant for a given NVIDIA driver
version, and is independent of the CUDA version or GPU
model. This consistent layout allows attackers to craft a
malicious payload that performs a controlled stack OOB
read, reliably disclosing pointers within the randomized
GPU address space. As a result, we are able to effectively
bypass GPU ASLR.

Finding-7: We discovered a hidden stack frame pre-
ceding the regular CUDA kernel stack that contains
pointers to randomized code segments such as the
.text and CUDA library. This frame enables reliable
leakage of GPU addresses via a controlled stack-
based OOB read, thereby bypassing GPU ASLR.

Bypassing CPU ASLR. Once a GPU-side address (e.g.,
within the .text segment) is obtained, the attacker can
exploit the limited correlation entropy between GPU and
CPU addresses to infer sensitive CPU-side addresses. As
shown in §5.3, our analysis reveals that the offset between
GPU .text objects and CPU-side glibc objects exhibits only
7 bits of entropy. Thus, the attacker’s challenge reduces to
correctly identifying the offset.

Specifically, we observe that the offset between GPU-
side .text base address and CPU-side glibc base address
varies across different GPU and driver versions. However,
this variation is confined to bits [20:27], while the higher
and lower bits remain stable. Furthermore, within the same
GPU and driver configuration, ASLR randomization intro-
duces variability only in bits [21:27] of the offset. These
two sources of variability partially overlap, and can be
jointly modeled as 8 bits of entropy. Consequently, the
attacker only needs to randomize bits [20:27] in the offset
0x0XX00000(Anonymized), which has a 1/256 chance of being
correct. We consider a per-trial success probability of 1/256
to be practically exploitable under the parallelism available
on modern processors. Prior work [5] has shown that even
a per-trial probability as low as 1/219 can be overcome in

1 __global__ void transform_tensor(uint64_t* input, uint64_t* output,
int width) {↪→

2 int row = blockIdx.x * blockDim.x + threadIdx.x;
3 if (row > width)
4 return;
5 ...
6 // temp located at local stack
7 uint64_t temp[512];
8 temp[0] = input[row];
9 for (int i = 1; i < 512; i++){

10 temp[i] = input[i - 1] * row + temp[i - 1];
11 ...
12 }
13

14 // row > 512 will overflow
15 output[row] = temp[row];
16 }

Figure 5: An example CUDA program containing an OOB vulner-
ability. If the input width exceeds 512, accessing temp[row] will
result in an out-of-bounds read.

roughly 33 minutes with parallelism.

6.3. Case Study

To demonstrate the practicality of our attacks, we con-
struct a realistic scenario based on a vulnerable CUDA
kernel, shown in Figure 5. We embed this kernel into a
custom TensorFlow operator to simulate a real-world ML
deployment, where users upload and process images through
GPU acceleration. The kernel, transform_tensor, performs a
transformation over a 1D tensor representing image rows. It
uses a local stack-allocated array temp[512] for intermediate
computation and writes the result to output. However, if the
input tensor width exceeds 512, the variable row can exceed
the bounds of the temp array, resulting in OOB stack read
on line 15. This read discloses adjacent stack data, which,
as we demonstrate, can include sensitive addresses within
the GPU’s virtual address space. We demonstrate how an
attacker conducts the address leakage attack in the following
four steps:
Step 1: Triggering the vulnerability with malicious input.
The attacker provides a crafted input, which is an image with
a width larger than 512. The image will be converted into a
tensor and passed to the CUDA kernel. The kernel processes
this input in parallel across CUDA threads. Because the
kernel checks only whether row > width (line 4) and not
whether row < 512, threads with row > 512 can read past
the bounds of the local array temp, accessing adjacent stack
memory. The OOB data is then written to the output tensor
and returned to the attacker.
Step 2: Extracting GPU virtual addresses from output.
From the returned output tensor, the attacker scans for values
resembling valid addresses. For example, a value such as
0x7fffd4e0d6b0 may correspond to a pointer into the GPU-
side CUDA library segment. Since this segment is aligned
to 2MB (verified via page table analysis), the attacker can
obtain its base address by zeroing out the lower 20 bits:
cuda_lib_base = 0x7fffd4e00000.
Step 3: Inferring CPU-side addresses via known offsets.
As shown in §6.2, the offset between GPU-side segments



(.text or CUDA library) and CPU-side segments (glibc) is
influenced by the GPU model, driver version, and ASLR at
runtime. Interestingly, the resulting randomness uniformly
affects only bits [20:27] of the offset, with all other bits
remaining stable. So the attacker can add the known off-
set (0x0XX00000(Anonymized)) where only bits [20:27] are
randomized: : glibc_base = 0x7fffd4e00000 + 0x0XX00000.

Now the attack can recover the glibc base address. Since
only 8 bits are unknown, this guess has a 1/256 probability
of success per attempt. Even if the initial guess is incorrect,
the attack can be retried multiple times from Step 1.

7. Discussion and Mitigation

Previous sections presented the weaknesses in GPU
ASLR and demonstrated how these weaknesses can be
exploited to bypass randomization and launch attacks. In
this section, we provide additional discussion and potential
mitigation strategies.

7.1. Comparison to Prior Work

Our work corrects two inaccurate conclusions from prior
studies. First, Zhang et al. [49] stated that each entry in
the PD3-level GPU page table is 1024 bytes, with a page
consisting of 4 entries. However, our reverse engineering
results reveal that PD3 entries are actually 8 bytes each,
consistent with other levels. Only entries 0–3 are valid,
while entries 4–511 are all zeroed out. We reproduced their
experimental environment and found that some parts of the
page tables were missed during scanning, which likely led to
the incorrect inference. Second, Guo et al. [17] claimed that
the CUDA built-in library segment in GPU virtual memory
is not randomized. In contrast, our experiments demon-
strate that this segment is indeed randomized, indicating
a misunderstanding in their analysis. We discovered that
their experiments were conducted under cuda-gdb, which
disables ASLR by default and thus may have caused this
misunderstanding. We have confirmed these findings with
the authors, who agreed with our explanations.

7.2. Mitigation Strategies

Fully randomizing the GPU address space. One of the
primary weaknesses of GPU ASLR lies in coarse-grained
randomization, as illustrated in Finding-5. To improve the
strength of GPU ASLR, we recommend NVIDIA extend
randomization to include the CUDA data structure segment.
This will prevent the non-randomized addresses from being
exploited to leak information and will significantly increase
the difficulty of exploiting OOB vulnerabilities.
Enforcing GPU and IOMMU page table permissions.
Our analysis revealed that 1) GPU page tables lack the
executable bit (X-bit), and 2) GPU accesses to CPU memory
through the IOMMU page table lack proper permission en-
forcement. These allow GPU code to maliciously access and
modify the mapped CPU physical memory. Implementing

stricter permission controls for GPU and IOMMU page
tables can help prevent such unauthorized memory access
and modification.
Increasing the entropy of GPU ASLR. GPU address
randomization currently provides only 20 bits of entropy,
which leaves it vulnerable to brute-force attacks even with-
out memory leaks. Increasing the entropy of GPU address
randomization would make brute-forcing impractical. In ad-
dition, the offsets between different GPU memory regions
should be randomized to enhance Correlation Entropy,
making address inference more challenging and reducing
the probability of successful attacks.
Updating to the latest NVIDIA driver. NVIDIA has
addressed some of these issues in recent driver releases. In
particular, the exploitation method described in Finding-7
has been mitigated in version 570 of the driver. We strongly
recommend users update to the latest driver versions to
benefit from these security improvements. However, if a
stronger GPU vulnerability such as arbitrary address read
exists, the ASLR bypass can still be triggered by accessing
the fixed memory region described in Figure 2.

8. Related Work

ASLR analysis. ASLR has been a cornerstone of modern
memory protection mechanisms since it was first introduced
by the PaX team in 2003 [45]. Over the years, numerous
studies have systematically analyzed ASLR across different
platforms. Binosi et al. [5] conducted a comprehensive
evaluation of ASLR implementations on Linux, Windows,
and macOS, uncovering low-entropy weaknesses that en-
able rapid bypasses. Similarly, Marco-Gisbert et al. [16]
exposed vulnerabilities in ASLR on Linux and PaX systems,
subsequently introducing ASLR-NG [27], a framework for
systematic ASLR analysis. Jang et al. [19] investigated the
paradoxical scenario where, under certain rare conditions,
ASLR inadvertently facilitates memory exploitation. They
also identified real-world vulnerabilities demonstrating this
effect. Koschel et al. [23] demonstrated a side-channel at-
tack that bypasses KASLR. Beyond these efforts, extensive
research has explored ASLR weaknesses across various
platforms, including Windows 10 [10], IoT firmware [39],
and Linux kernel drivers [33].

In contrast to these prior works, which primarily focus
on CPU-based systems or well-documented software envi-
ronments, our study targets NVIDIA GPUs—an area that
remains largely unexplored and is often treated as a black
box due to the lack of documentation beyond limited open-
source driver code.
GPU vulnerability analysis. Research on vulnerabilities
on GPUs has primarily focused on microarchitecture anal-
ysis, side-channel attacks, and memory vulnerabilities. In
the realm of side-channel analysis, Jia et al. analyzed the
Tensor Cores and cache hierarchies of NVIDIA Turing [20]
and Volta [21] architectures using benchmarking techniques.
Abdelkhalik et al. [2] extended similar analysis to NVIDIA
Ampere GPUs.



In terms of side-channel attacks, Naghibijouybari et
al. [30] introduced a cross-process side-channel attack on
GPUs to achieve information leakage. Similarly, Zhang
et al. [49] discovered that processes isolated by MIG on
NVIDIA Ampere GPUs still share the L3 cache, enabling
side-channel attacks. Nayak et al. [31] exploited the last-
level cache on Pascal GPUs, while Dutta et al. [12] lever-
aged the NVLink interconnect between CPU and GPU to
exfiltrate data.

Regarding memory vulnerabilities, the work most
closely related to ours is by Guo et al. [17], who conducted
a systematic analysis of OOB vulnerabilities on NVIDIA
GPUs and reverse-engineered the stack memory layout.
However, their analysis assumes that ASLR is disabled,
whereas our work focuses on ASLR itself and demonstrates
how to bypass it. Mittal et al. [29] provided a comprehensive
survey of GPU vulnerabilities, categorizing exploit patterns
such as data leaks, side- and covert-channels. Miele et
al. [28] exploited stack overflows on TITAN GPUs to hijack
function pointers, while also analyzing instructions related
to return addresses and the feasibility of ROP attacks. Park
et al. [37] proposed the ”Mind Control” attack, a novel
method that manipulates GPU device memory to utilize
fixed CUDA library code addresses to disrupt deep learning
systems, significantly degrading the model’s prediction ac-
curacy to near-random levels. Sorensen et al. [44] introduced
the ”LeftoverLocals” attack, exploiting uninitialized GPU
local memory to recover sensitive data across processes or
containers. Their work demonstrated the ability to eavesdrop
on other users’ interactive LLM sessions by recovering data
from the local memory of Apple, Qualcomm, and AMD
GPUs. Roels et al. [41] studied ROP gadgets in GPU mem-
ory and proposed a ”compound gadget” method to bypass
NVIDIA’s defense of storing return addresses in registers.
However, they did not assume ASLR was bypassed, nor did
they analyze the implementation details of ASLR, leaving
the practical feasibility of such attacks unaddressed.

Compared to these studies, our work expands the scope
of GPU security research by focusing on NVIDIA GPU
ASLR, a field largely unexplored in existing literature. We
not only reveal, for the first time, critical flaws in NVIDIA
GPU ASLR but also demonstrate how these weaknesses can
be exploited to bypass CPU ASLR, enabling attacks that
span both GPU and CPU domains.

9. Conclusion

This paper presents the first comprehensive examination
of ASLR on NVIDIA GPUs. By dumping and analyzing
GPU page tables, we reveal a detailed GPU memory lay-
out and define metrics to evaluate randomization entropy.
Our findings expose previously unknown vulnerabilities,
including an unrandomized GPU heap and correlated off-
sets between GPU and CPU regions, which can undermine
both GPU and CPU ASLR. Next, a practical case study
demonstrates how these flaws enable attackers to infer CPU
addresses from the GPU. Finally, we give mitigations to
improve the security of GPU ASLR.
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Appendix

More Reverse-engineering Details of FlagProbe

According to previous work [17], NVIDIA GPUs use
two different address-translation mechanisms. This causes
the addresses printed by cuda-gdb to differ from the actual
addresses recorded in the page tables. Therefore, we cannot
trust cuda-gdb’s addresses directly; instead, we must locate
segment addresses by searching for flags in GPU physical
memory and by consulting the page tables.

System constant memory: Raw values read from reg-
isters (e.g., 0xfffb88) produced many collisions. To reduce
these, we leverage the alignment property of constant-
memory loads: valid flags are 8-byte aligned. We filter
out occurrences that are not aligned accordingly. We then
corroborate multiple candidate flags by checking multiple
constant loads. For example, we search for values produced
by MOV R11, c[0x0][0x118] and verify that they maintain an
expected relative offset (0x118-0x28=0xF0). The combination
of alignment filtering and relative-offset checks reliably
confirms the location of the segment.

.text: We initially attempted to use ordinary GPU in-
struction sequences as flags, but these conflicted heavily
with instructions from GPU CUDA libraries (unknown at
first). To avoid such collisions, we try many instruction
patterns and finally choose instructions that load from sys-
tem constant memory (e.g., MOV R1, c[0x0][0x28]). Such
patterns almost do not appear in CUDA library code and
thus can serve as reliable flags. However, after completing
the reverse engineering, we found that the text segment
addresses printed in cuda-gdb were consistent with those we
recovered. Nevertheless, cuda-gdb failed to display (using p
/x instruction) the correct contents corresponding to these
text addresses and always print 0x0.

CUDA library: Attempts to obtain CUDA library ad-
dresses via cuda-gdb or by printing function addresses failed.
The cuda-gdb would reports missing symbols, and compiling
code that prints function addresses did not succeed. We
found that NVIDIA treats certain library functions specially:
some functions (e.g., memcpy) may be inlined into the text
segment, while others (e.g., printf) are not exposed to
symbol-based single-step debugging (e.g., si or ni) and
therefore cannot be stepped into. We observed that branch
targets in .text disassembly often show as 0x0 until they
are resolved at runtime. So by reading branch instruction
values from physical memory and resolving their runtime
targets, we can identify addresses that belong to the CUDA
library.

CPU and CPU Objects Correlation

Figure 6 shows the correlation between CPU-side ob-
jects. Most CPU objects exhibit correlation entropy above
25 bits. However, there are still three abnormal situations:
the correlation entropy between environment variables and
the stack is only about 10 bits, a finding consistent with the

Figure 6: The correlation entropy between different CPU objects.
Both the X-axis and Y-axis represent CPU objects.

results reported in the paper [5]. We additionally observe
that the CUDA library, global variables, and the .text
segment on the CPU share the same ASLR offset block.
Moreover, the correlation entropy between the glibc address
and shared memory (obtained via shmget/shmat) is only
12 bits. Consequently, once a GPU-derived leak reveals a
CPU-side glibc address, it may enable further disclosure of
addresses within the shared-memory region.



Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary of Paper

This paper presents the first comprehensive study of
ASLR on NVIDIA GPUs, a security mechanism well ex-
plored on CPUs but largely overlooked in the GPU domain.
By introducing new methods to probe GPU memory map-
pings, the authors reconstruct detailed layouts and assess
ASLR strength using entropy-based metrics.

The analysis uncovers critical weaknesses: GPU heaps
are left unrandomized, and consistent offset patterns link
GPU and CPU memory. These flaws significantly undermine
the protection offered by ASLR, leaving both GPU and host
CPU memory layouts more vulnerable than expected. The
authors validate their findings with NVIDIA and demon-
strate a practical attack that leverages GPU information to
infer CPU memory organization. Beyond identifying these
risks, the work highlights the importance of reverse engi-
neering closed GPU architectures as a foundation for both
exposing vulnerabilities and strengthening future defenses.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Identifies an Impactful Vulnerability
• Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) The paper delivers the first in-depth investigation of
ASLR on NVIDIA GPUs. As the study demonstrates,
many earlier assumptions and preliminary findings do
not hold, making this work highly valuable for re-
searchers and practitioners focused on GPU-based at-
tacks and defenses.

2) The authors created and released a framework with
novel techniques for analyzing GPU memory layout,
offering an important resource for the community.

3) All vulnerabilities were disclosed responsibly to the
vendor, and any potentially sensitive information was
carefully anonymized to prevent misuse.
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