
Uncore Encore: Covert Channels Exploiting Uncore Frequency
Scaling

Yanan Guo∗
University of Pittsburgh
Pittsburgh, PA, USA
yag45@pitt.edu

Dingyuan Cao∗
University of Illinois
Urbana-Champaign

Champaign and Urbana, IL, USA
dc29@illinois.edu

Xin Xin
University of Pittsburgh
Pittsburgh, PA, USA
xix59@pitt.edu

Youtao Zhang
University of Pittsburgh
Pittsburgh, PA, USA
zhangyt@cs.pitt.edu

Jun Yang
University of Pittsburgh
Pittsburgh, PA, USA

juy9@pitt.edu

ABSTRACT
Modern processors dynamically adjust clock frequencies and volt-
ages to reduce energy consumption. Recent Intel processors sepa-
rate the uncore frequency from the core frequency, using Uncore
Frequency Scaling (UFS) to adapt the uncore frequency to various
workloads. While UFS improves power efficiency, it also introduces
security vulnerabilities. In this paper, we study the feasibility of
covert channels exploiting UFS. First, we conduct a series of exper-
iments to understand the details of UFS, such as the factors that
can cause uncore frequency variations. Then, based on the results,
we build the first UFS-based covert channel, UF-variation, which
works both across-cores and across-processors. Finally, we analyze
the robustness of UF-variation under known defense mechanisms
against uncore covert channels, and show that UF-variation remains
functional even with those defenses in place.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; •Computer systems organization→Architectures;
Multicore architectures.

KEYWORDS
Security; Side channel; Cache

ACM Reference Format:
Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang. 2023.
Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling.
In 56th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3613424.3614259

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614259

1 INTRODUCTION
Modern processors often contain complex microarchitectural struc-
tures that are shared among applications. Although such resource
sharing provides efficiency and cost benefits, it also creates oppor-
tunities for new attacks that take advantage of these features. One
category of such attacks involves software-based covert channels
and side channel attacks (e.g., [1, 12, 23, 24, 38, 43, 44, 48, 49, 51, 53,
54, 62, 66]). Specifically, the execution of one application may cause
side effects on the states of the shared structures, which can be
observed by another application (e.g., through timing variations).
Adversaries can utilize this to surreptitiously transfer data (in covert
channel scenarios), or infer secrets from a victim process (in side
channel scenarios), bypassing sandboxes and traditional privilege
boundaries.

Following Intel’s terminology, a multi-core processor consists
of multiple cores and an uncore. The uncore typically includes
the last-level cache (LLC), the on-chip interconnect, the memory
controllers (MCs), and other components. Over the last two decades,
the microarchitectural resources in both the cores (e.g., branch
predictor [2, 17, 18]) and the uncore (e.g., the LLC [35, 42, 63, 64])
have been exploited to mount covert channels (and side channel
attacks). However, covert channels based on the uncore components
are a more serious threat to the security of modern systems, as
the uncore is shared among all the applications running on the
processor.

Fortunately, in recent years, there has been a growing focus on
uncore covert channels, leading to the development of countermea-
sures against them (e.g., [3, 5, 27, 31, 47]). Since most uncore covert
channels are based on uncore resource contention/conflict, partition-
ing the uncore hardware resources among users is a promising
countermeasure approach. Various partitioning strategies with dif-
ferent granularities have been proposed to mitigate different uncore
covert channels. For example, inside the uncore of a processor, LLC
set partitioning [55] can defend covert channels based on LLC set
conflicts (e.g., Prime+Probe [45]); tile partitioning may mitigate
covert channels based on interconnect contention (e.g., the mesh
contention [11]). In addition, for a multi-processor (multi-socket)
system, one can also use a coarse-grained mechanismwhich assigns
each user to a separate processor. In this scenario, each user has
its own uncore, and users are not allowed to make cross-socket
memory allocations/accesses, resulting in no cross-socket uncore

https://doi.org/10.1145/3613424.3614259
https://doi.org/10.1145/3613424.3614259

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

contention.With all these partitioning designs, we ask the following
questions:

Can uncore partitioning prevent all uncore covert channels? Can
we build a practical uncore covert channel that remains functional
even with one or more partitioning mechanisms in place?

There is an ever-growing need for improving power efficiency, as
higher power usage directly translates into higher operational costs
for data centers. The power consumption of a processor is closely
related to its frequency. Thus, adjusting the processor frequency
based on the workloads has been widely used on Intel processors
to reduce power usage. Earlier Intel processors use a common fre-
quency for the cores and the uncore. On more recent processors,
the uncore frequency is controlled independently and can be dif-
ferent than the core frequency. In addition, Intel has introduced a
mechanism called uncore frequency scaling (UFS) for their Xeon
processors, which adjusts the uncore frequency based on uncore
needs [7, 29]. This UFS mechanism, however, may actually intro-
duce practical uncore covert channels that cannot be prevented by
uncore partitioning.

In this paper, we conduct a series of experiments to study the
detailed behavior of UFS. We have three important observations
from the results. First, the power monitoring unit (PMU) continu-
ously monitors the system status, and adjusts the uncore frequency
by increasing, decreasing, or maintaining it approximately every
10 ms. Second, when there is low demand for uncore resources,
the uncore frequency remains relatively low. There are (at least)
two situations that can cause the uncore to operate at a higher
frequency: 1) high uncore utilization, such as frequent LLC accesses
and dense interconnect traffic, and 2) a significant proportion of ac-
tive cores being stalled. Third, we found that for a multi-processor
system, all the uncores in different processors always maintain
similar frequencies.

Next, based on these observations, we propose a new uncore
covert channel that can operate as both a cross-core and cross-
processor channel on systems with UFS enabled. We name this
covert channel UF-variation. Specifically, the sender manipulates
the uncore frequency (e.g., by controlling the density of LLC ac-
cesses) and encodes the data into the uncore frequency variation
within each transmission interval. For example, the sender increases
the uncore frequency in the interval to send a bit “1”, and decreases
it to send a bit “0”. The receiver then obtains the data by observing
the uncore frequency variation within a transmission interval. We
found that the LLC access latencies differ significantly when the
uncore operates at different frequency levels. Thus, the receiver
can indirectly determine the uncore frequency by timing the LLC
accesses. We test the channel capacities of UF-variation and show
that UF-variation can achieve a capacity of 46 bit/s in the cross-core
case, and 31 bit/s in the cross-processor case. Compared to other
covert channels, the capacities of UF-variation are limited. However,
we show that UF-variation remains functional even with one or
more uncore partitioning mechanisms enabled, while most prior
uncore covert channels can be prevented by those mechanisms.

Finally, we demonstrate how UFS can be used for side channel
attacks to profile the activities of co-located users. For example,
when used for website fingerprinting, the UFS-based attack can
achieve a top-1 accuracy of 82.18%.

2 BACKGROUND
2.1 Architecture of Intel CPUs
On-chip interconnect. On multi-core processors, an on-chip in-
terconnect is used to connect the processor cores, LLC slices, MCs,
and other components (e.g., the PCIe controller). This interconnect
facilitates efficient data transmission and coordination between
these essential components. Early generations of Intel server-grade
processors (Intel Xeon processors) use a ring interconnect (often
referred to as a ring bus), allowing data to circulate in a loop-like
manner. Recent Intel Intel Xeon processors use a mesh interconnect
which has a grid-like layout with multiple horizontal and vertical
channels, enabling more direct on-chip communication.

As shown in Figure 2, with a mesh interconnect, the processor
chip is structured as a 2D matrix of tiles; each tile can be either
a core tile which consists of a core (and an LLC+directory slice),
or a controller tile which consists of an integrated MC. Note that
there are three types of CPU dies for Intel Xeon processors based
on Skylake: LCC, HCC, and XCC, which represent low, high, and
extreme core counts, respectively. The XCC die features 30 tiles
(28 core tiles + 2 controller tiles), arranged in a 5×6 grid. However,
some tiles might be intentionally disabled1 by Intel. For example,
our Xeon Gold 6142 processor which uses the XCC die, has 16
cores and 16 LLC slices, meaning 12 out of 28 core tiles are disabled
(Figure 2).

On an Intel Xeon processor, physical addresses are uniformly
distributed to LLC slices using a slice hash function. The specific
hash function used in a processor is determined by the number of
tiles in the processor. For example, all processors with 28 active
core tiles use the same hash function, which has been reverse engi-
neered [46]. Note that an unprivileged user, who cannot access the
physical address of a given virtual address, may not directly know
the LLC slice a virtual address is mapped to. However, the user can
infer this mapping indirectly using timing information, as access
latencies (from a specific core) may vary across different LLC slices.
CPU uncore. According to Intel’s terminology, a multi-core pro-
cessor is composed of several cores and an uncore. A core is a
logically independent computing unit with ALUs, FPUs, registers,
and private caches. The uncore, on the other hand, comprises the
components that are not part of the individual cores but are essen-
tial for the overall functionality and performance of the processor.
Typically, the uncore includes the LLC, on-chip interconnect, MCs,
and other components (such as the PMU). The uncore is shared by
all the cores on the processor.

2.2 CPU Power Management
Reducing the power consumption of processors (especially server
processors) is becoming increasingly vital these days. As a result,
Intel has integrated many power efficiency features into its proces-
sors. In this section, we focus only on the features that are related
to our design.

2.2.1 CPU Frequency Scaling. Intel processors use the common
power saving approach, Dynamic Voltage and Frequency Scaling
(DVFS) [33], to adjust the frequencies of the cores, based on the
workloads. This frequency adjustment works at the granularity of
1The routers in the disabled tiles are still functional.

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

P-states. Each P-state corresponds to a different operating point of
the core, in 100 MHz frequency increments. Recent Intel proces-
sors offer two mechanisms for P-state selection, namely SpeedStep
and SpeedShift. With SpeedStep, the operating system (OS) is re-
sponsible for controlling and selecting P-states. In contrast, when
SpeedShift is enabled, the P-state selection is controlled by the
processor hardware rather than the OS. However, the OS can still
give hints to the hardware, such as restricting the range of allowed
P-states.
Uncore frequency scaling. Early Intel processors use either a
fixed uncore frequency (e.g., for Nehalem and Westmere) or a com-
mon frequency for both cores and the uncore (e.g., for Sandy Bridge
and Ivy Bridge). Since Haswell, the uncore frequency can be set
independently of the core frequencies, and UFS was introduced
on Intel Xeon processors to dynamically control the frequency
of the uncore, based on the needs for the uncore [29]: UFS incre-
ments, decrements, or leaves unchanged uncore frequency based
on whether the uncore is under stress, under-utilized, or stable,
respectively. This ensures that the uncore components can deliver
optimal performance when required, while conserving energy dur-
ing periods of reduced activity or demand. Unlike DVFS (for cores),
the selection of uncore frequency is always managed by hardware
using built-in power management algorithms. However, the OS
can restrain the uncore frequency selection, through model specific
registers (MSRs). Specifically, the OS can specify the maximum and
minimum uncore frequencies by writing to UNCORE_RATIO_LIMIT,
as shown in Figure 1, and the hardware will only adjust the uncore
frequency within this range. On our processors specified in Ta-
ble 1, the default minimum frequency is 1.2 GHz, and the maximum
frequency is 2.4 GHz.

Reserved 7-bit frequency (in 100 MHz)

Min freq. Max freq.

0781563

Figure 1: The layout of the uncore freq. limitation register.

The specifics of UFS on Intel processors are undocumented. Ac-
cording to our experiments (and prior studies such as [29]), in
general the uncore frequency is dynamically adjusted only when
all the active cores are running at a frequency lower than (or equal
to) the base frequency2 (i.e., UFS is enabled). When at least one
core is running at a higher frequency, the uncore consistently stays
at the maximum frequency specified in UNCORE_RATIO_LIMIT (i.e.,
UFS is disabled). Note that UFS is also disabled if the OS sets the
minimum and maximum uncore frequencies to be the same.

2.2.2 CPU Idle Power Management. Computing tasks often involve
idle periods, during which the processor core enters a low-power
state to save energy. Modern processors support multiple core
power states, known as C-states [32]. A specific C-state is denoted
as𝐶𝑛, where 𝑛 is the index.𝐶0 is the normal operating state where
the core is 100% active, while other states (C1 to Cn) represent
idle states (also called sleep states) where the core is inactive and
2The specific conditions vary depending on the processor model. For example, the
base frequency is included for Intel Xeon E5 v3 processors, but not for Intel Xeon SP
processors.

some components of the core are powered down. A deeper C-state
indicates more powered-down components and better power effi-
ciency; however, it also means that it takes more time for the core
to become fully active (i.e., longer exit latency). The OS primarily
manages the C-state selection, striking a balance between power
efficiency and performance. Typically, the OS chooses a C-state
based on the intensity of the workloads running on the core. If the
workloads are intense, the core is more likely to stay in a shallow
C-state during idle periods; otherwise, it stays in a deeper C-state.

When all the cores of a processor are idle, the uncore is also
(partially) turned off to further reduce the idle power consumption.
Similar to C-states, modern processors support several package
C-states (i.e., PC-states), which indicate the power state of the
uncore [9]. Again, the uncore is fully active when it is in PC0, with
deeper PC-state meaning more uncore components are turned off
and there is a longer exit latency for the uncore. The selection
of PC-state is usually driven by the selection of C-state. On Intel
processors, the PC-state index is no larger than the smallest C-state
index (among all the cores on the processor). For example, if one or
more cores are in C0, the uncore is in PC0.

2.3 CPU Uncore Covert Channels
Over the last few years, researchers have proposed many covert
channels that exploit the core components. We discuss these covert
channels in this section.
Covert channels based on the LLC. In this type of covert chan-
nels, the sender intentionally modifies the LLC state to send the
data; the receiver then checks the LLC state (e.g., through timing
information) to receive the data [8, 25, 26, 28, 40, 42, 53, 65]. For
example, in Prime+Probe [42], the data is transmitted through set
conflicts. To send a bit “1”, the sender loads its own data into an
LLC set, evicting the receiver’s data in this set; to send a bit “0”, the
sender does not load the data and the receiver’s data remains in
this set. The receiver then determines the bit by checking whether
its data is evicted from the LLC, based on the access latency of this
data.
Covert channels based on the interconnect. As explained in
Section 2.1, modern processors use interconnects for on-chip data
transmission. Recent work [11, 16, 50, 57] discovered that LLC ac-
cesses from different cores may contend for interconnect bandwidth
(for both ring and mesh interconnects), resulting in longer access
latencies. Thus, the interconnect can be utilized for a covert chan-
nel: the sender sends a bit by generating LLC accesses that are
transmitted through the interconnect (for “1”) or not (for “0”). At
the same time, the receiver generates LLC accesses that contend
with the sender’s accesses on the interconnect, and measures the
LLC access latencies to receive the data.
Covert channels based on other uncore components. Some
covert channels exploit contention in other uncore components,
such as MCs, PMUs, and PCIe controllers [20, 58]. Although the
specifics may vary across channels, the overall concept remains
the same: contention for limited hardware resources can affect the
access time to those resources, enabling covert communication.
Covert channels based on the idle power states. Since multiple
PC-states exist, it is possible to encode information into these PC-
states and form a covert channel. Specifically, as PC-states are driven

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

x

(0,0)

IMC

x

(2,0)

x

(3,0)

x

(4,0)

Tile

(0,2)

x

(1,2)

Tile

(2,2)

x

(3,2)

Tile

(4,2)

Tile

(0,3)

x

(1,3)

Tile

(2,3)

Tile

(3,3)

x

(4,3)

Tile

(0,4)

Tile

(1,4)

x

(2,4)

Tile

(3,4)

x

(4,4)

Tile

(0,5)

IMC

Tile

(2,5)

x

(3,5)

x

(4,5)

Tile

(0,1)

Tile

(1,1)

Tile

(2,1)

Tile

(3,1)

Tile

(4,1)

3 hops2 hops1 hop

Core

L1/L2 Cache

LLC Slice

Directory Slice

Router

Tiles that are turned off.

CPU Core.

CPU Uncore.

Figure 2: The architecture of our Intel Xeon Gold 6142 pro-
cessor; the I/O controllers are omitted.

by C-states, the sender can force the uncore to enter a certain PC-
state by controlling the workload on a core (assuming there is no
other active cores). The receiver can then infer the PC-state by
examining the exit latency of the uncore (cf. Section 2.2.2). For
example, this latency can be measured through a network interface
card: the receiver records the timestamp when a packet arrives (𝑇1),
and the timestamp when the interrupt service routine starts (𝑇2).
Since serving this package requires waking up the uncore and a
core, 𝑇2 −𝑇1 is the sum of this core’s exit latency and the uncore’s
exit latency. If the receiver is aware of the core’s C-state and its exit
latency, the receiver can infer the uncore’s exit latency and thus
the PC-state from 𝑇2 −𝑇1. Compared to other uncore-based covert
channels, this Uncore-idle channel is much less reliable, as it can
only work in an “idle” environment. If there are other workloads
running on the same processor, keeping at least one core fully
active, the uncore stays in PC0, and this channel can no longer
function.

3 UFS CHARACTERIZATION
Although UFS can improve the processor’s power efficiency, it
may also lead to security problems. In this work, we demonstrate
that UFS can be exploited to build new uncore covert channels.
In order to do this, we must first answer a fundamental question:
“how do Intel processors dynamically adjust the uncore frequency
using UFS?”. For example, we must understand which factors lead

to uncore frequency changes. Thus, in this section, we study the
details of UFS.
Experiment platform. Unless otherwise specified, all the exper-
iments in this paper are performed on a dual-socket system con-
sisting of two Intel Xeon processors. An overview of this system
is given in Table 1. Figure 2 shows the architectural details of one
of these processors. Note that the basic architectures of the two
processors are the same; however, the tiles that are turned off are
different (cf. Section 2.1). Figure 2 corresponds to Processor 0 on
our platform; the details of Processor 1 are omitted due to the lim-
ited space. UFS is enabled on both processors with the powersave
frequency governor chosen. In this section, the uncore frequency is
obtained by reading the MSR. Specifically, Intel provides the MSR,
U_PMON_UCLK_FIXED_CTR, which is incremented by one at each
tick of the uncore clock. Thus, by repeatedly reading this MSR, we
can indirectly obtain the current uncore frequency.

Table 1: Platform details.

Processor 2× Intel Xeon Gold 6142
Microarchitecture Skylake-SP
Num of cores 2×16
Core base frequency 2.6 GHz
UFS 1.2-2.4 GHz
L1 cache 8-way associative, private, 32KB+32KB
L2 cache 16-way associative, private, inclusive, 1024KB
LLC 11-way associative, shared, non-inclusive, 22528KB
Operating system Ubuntu 22.04.1
Frequency driver Intel_cpufreq
Frequency governor Powersave

3.1 UFS with LLC/Interconnect Utilization
The idea behind UFS is to adjust the uncore frequency based on
the needs for uncore. Naturally, we then expect that the uncore
frequency is higher when there is higher uncore utilization. In this
section, we conduct experiments to verify this hypothesis.
Experiments.We study the uncore frequency under various un-
core utilization levels, focusing on the utilization of the LLC and
the interconnect. To control the uncore utilization level, we need
to regulate the amount of LLC accesses and interconnect traffic. To
achieve this, we use a group of threads to generate LLC accesses
and pin each thread to a different core on the same processor. All
the accesses from the same thread target the same LLC slice, while
accesses from different threads target different LLC slices. Then, we
can manipulate the uncore utilization by varying two parameters:
1) the total number of threads and 2) the on-chip distance (hops, cf.
Figure 2) between the CPU core and the target LLC slice for each
thread. The first parameter mainly affects the LLC utilization, with
more threads indicating a higher LLC access density. The second
parameter mainly affects the interconnect utilization, with a longer
core-to-LLC distance indicating more interconnect traffic.
Generate LLC accesses. To create LLC accesses, we must bypass
the L2 cache (and L1). We achieve this using eviction lists: we define
an eviction list, 𝐸𝑉𝑗 (𝑖), as a group of cache lines (addresses) that
are mapped into the 𝑖𝑡ℎ L2 set, as well as the 𝑗𝑡ℎ LLC slice. Then,
a thread that targets the 𝑠𝑡ℎ LLC slice operates as follows:

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Step 1: Create 𝑛 eviction lists, 𝐸𝑉𝑠 (0) to 𝐸𝑉𝑠 (𝑛 − 1); each list
contains𝑚 addresses.

Step 2: Repeatedly access the addresses in 𝐸𝑉𝑠 (0) to 𝐸𝑉𝑠 (𝑛 − 1)
and in each round, alternate the accesses to addresses in
different eviction lists, as shown in Listing 1. With proper
𝑚 and 𝑛, all these accesses are likely to miss in the L2
cache and hit in the 𝑠𝑡ℎ LLC slice (explained below).

/* n is the number of eviction lists. */
/* m is the number of addresses in each list. */
/* EV_lists[n][m] is used to store all the eviction

lists , EVs(0) to EVs(n-1). */
while ((i++) < Total_Rounds) {

for(j = 0; j < m; j++)
for(k = 0; k < n; k++)

memaccess(EV_lists[k][j]);}

Listing 1: The loop used in each thread to creat LLC accesses
(and traffic on the interconnect), referred to as the traffic
loop.

Let𝑊𝐿2 and𝑊𝐿𝐿𝐶 be the associativities of the L2 cache and the
LLC, respectively. Then, to ensure that all the accesses in Step 2
are likely to be served by the LLC,𝑚 should be large enough (e.g.,
larger than𝑊𝐿2) to avoid L2 hits, and small enough (e.g., smaller
than𝑊𝐿2 +𝑊𝐿𝐿𝐶) to avoid LLC misses. For our processor where
𝑊𝐿2 = 16 and𝑊𝐿𝐿𝐶 = 11, we use 20 cache lines in each eviction list,
i.e.,𝑚 = 20. In addition, to guarantee L2 misses, the𝑚 addresses
in the same L2 set (same eviction list) must always be accessed in
a fixed order (assuming the LRU policy). To guarantee this order,
we use multiple L2 sets (multiple eviction lists) and alternate the
accesses to different sets: in this case the accesses to the same L2
set are separated (by accesses to other L2 sets) in the program
order, and are thus unlikely to be close enough to get reordered by
hardware. Here we use 64 L2 sets (64 eviction lists), i.e., 𝑛 = 64.
Results. We measure the uncore frequency with varying thread
counts and core-to-LLC distances. Our results show that when we
first launch the thread(s), the uncore frequency adjusts accordingly
and eventually stabilizes at a certain level (since each thread ex-
ecutes a loop). The stabilized frequencies are given in Figure 33.
First of all, for a given core-to-LLC distance (for all the threads),
executing more threads results in higher uncore frequencies. For
example, when all the threads are accessing their local LLC slices
(i.e., 0-hop traffic), the uncore frequency increases from 2.1 GHz to
2.3 GHz if the thread count increases from 1 to 16. Likewise, given a
specific thread count, the uncore frequency is higher if the threads
are accessing further LLC slices. In addition, when accessing LLC
slices that are 3 hops away from the core, the uncore frequency
reaches 2.4 GHz (i.e., the maximum uncore frequency, cf. Table 1),
even with just one thread running.

For reference, in Figure 3 we also show the uncore frequency
with only L2 accesses and no LLC access. In this scenario, the uncore
does not stay at a certain frequency; instead, it alternates between
1.4 GHz and 1.5 GHz. For simplicity, we refer to this situation as
“staying at 1.5 GHz” in the rest of this paper.

3With a given thread count and LLC access type, the uncore frequency still varies
slightly depending on the traffic direction.

1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5

2 . 1 2 . 2 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3

2 . 2 2 . 2 2 . 3 2 . 3 2 . 3 2 . 3 2 . 4 2 . 4 2 . 4 2 . 4

2 . 3 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4

2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4

1 2 3 4 5 6 7 8 1 5 1 6

LL
C T

raf
fic

Ty
pe

o f t h r e a d s
1 . 2

1 . 8

2 . 4

3 . 0
3 - h o p

2 - h o p

1 - h o p

0 - h o p

N o n e

Figure 3: The median uncore frequencies (in GHz) with dif-
ferent thread counts and LLC access types.

These results confirm that the uncore frequency changes based
on the uncore utilization, including both the LLC and the inter-
connect utilization. Higher utilization results in higher uncore fre-
quency. Without any traffic on the interconnect, the frequency can
only go up to 2.3 GHz; in contrast, it can go up to the maximum
uncore frequency (2.4 GHz) with interconnect traffic.

/* EV_list[m] contains all the addrs in the eviction
list. */

/* *EV_list[i] = EV_list[i+1], with i in [0, m-2]. */
/* *EV_list[m-1] = EV_list [0]. */
current_addr = EV_list [0];
while ((i++) < Total_Rounds) {

current_addr = *(current_addr);}

Listing 2: The loop used in each thread to stall the core,
referred to as the stalling loop.

3.2 UFS with Core Stalling
We conducted several supplementary experiments and studies, in
addition to those presented in Section 3.1, to determine if other
factors influence uncore frequency changes. It is shown that the
uncore frequency is also related to the number of cores that are
stalled due to waiting for load or store operations4.
Experiments. We use a similar approach to the one in Section 3.1.
We again launch a group of threads accessing the LLC slices; how-
ever, instead of accessing each address independently, we access
them through pointer chasing. That is, the data at a pointer address
dictates the subsequent pointer address. This ensures that the sub-
sequent load cannot be executed until the current load is completed,
i.e., the CPU core is stalled due to waiting for a load to finish. The
example code is shown in Listing 2; here we only use one eviction
list since the access order is already guaranteed by pointer-chasing.
Results. Our experiments show that with pointer chasing, the
uncore frequency always stabilizes at 2.4 GHz, regardless of the
thread count and the core-to-LLC distance. This means, the uncore
frequency reaches 2.4 GHz even when running just one thread
accessing the local LLC slice. Recall that without pointer chasing
(as in Section 3.1), with this setup the uncore frequency is only 2.1
GHz. To better understand this difference, we use Linux perf tools
4This aligns with the design in Intel’s patent [7].

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

0 3 6 9 12 15
1.2

1.6

2.0

2.4

U
nc

or
e

Fr
eq

ue
nc

y
(G

H
z)

of unstalled active cores

 1 stalled core 2 stalled cores 3 stalled cores
 4 stalled cores 5 stalled cores

Figure 4: The uncore frequencies based on the number of
stalled cores and active but not stalled cores.

to profile the pointer-chasing threads and gather data from two
counters: 1) cycle_activity.stalls_mem_any, which represents
the total time that the execution is stalled due to an outstanding
memory operation, and 2) cycles, which is the total execution time.
The results show that, the ratio of these two data is approximately
0.77 for each pointer-chasing thread. For comparison, this ratio is
only about 0.3 for the traffic threads used in Section 3.1. It is notable
that if the pointer chasing happens within L2 (no uncore activity),
the stalling ratio is 0.14, and uncore will not boost its frequency.
Thus, we hypothesize that the uncore frequency increases (to the
maximum uncore frequency) when the stalling time within a given
time period for one or more cores surpasses a certain threshold. In
the rest of this paper, we use the term “a core is stalled” to indicate
that “the stalling time of a core in almost every time period is above
this threshold”.

In the above experiments, all the threads running on the proces-
sor are the pointer-chasing threads. As a result, all the cores that
are active are stalled. We found that, the uncore frequency may
not reach 2.4 GHz when only some of the active cores are stalled,
and others are not. We test this by launching some threads that do
not stall the CPU cores alongside the pointer-chasing threads. As
shown in Figure 4, when two active cores are stalled, if there are
four (or more) other active cores which are not stalled, the uncore
frequency stabilizes at 1.8 or 1.5 GHz, rather than 2.4 GHz. Similarly,
when three cores are stalled and six (or more) cores are active but
not stalled, the uncore frequency is 1.8 or 1.5 GHz. These observa-
tions indicate that the uncore frequency is indeed influenced by the
proportion of the active cores that are stalled; the uncore frequency
only rises to 2.4 GHz if more than 1/3 active cores are stalled.

3.3 UFS Granularity
In the previous experiments, we focused on the stabilized uncore fre-
quencies under specific workloads. However, for building a covert
channel with UFS, it is also important to understand the details of
the frequency adjustment period (before stabilization). For instance,
we need to know the total time it takes for the frequency to rise
from 1.5 GHz to 2.4 GHz after a core becomes stalled. In this section,
we investigate this aspect.
Frequency increase.We launch a thread that first runs a nop loop,
and then switches to a stalling loop (cf. Listing 2). We record the
uncore frequency trace while the thread is running, collecting the

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)

1 0 . 4 1 0 . 4 9 . 9 9 . 8 9 . 8 9 . 8 1 0 . 3 9 . 7

T h e s t a l l i n g l o o p s t a r t s

Figure 5: The uncore frequency trace upon initiating the
stalling loop.

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)

9 . 8 9 . 9 1 0 . 3 9 . 3 1 0 . 3 1 0 . 4 9 . 9 9 . 8
T h e s t a l l i n g l o o p s t o p s

Figure 6: The uncore frequency trace upon stopping the
stalling loop.

uncore frequency every 200 𝜇s. The result is shown in Figure 5.
Before the stalling loop starts, the uncore frequency is 1.5 GHz.
Once the stalling loop starts, the uncore frequency increases by
100 MHz approximately every 10 ms; after the frequency reaches
2.4 GHz, it stabilizes. In addition, we tried launching multiple such
threads together and letting each thread access a further LLC slice,
but neither of these options canmake the uncore frequency increase
faster, i.e., it still only changes every 10 ms. Similar results apply
when using a traffic loop (cf. Listing 1) instead of the stalling loop.
Thus, we believe that the frequency control hardware checks the
system status approximately every 10 ms and decides whether and
how to update the uncore frequency. Additionally, similar to the
P-states for cores, the uncore also has different operating points in
100 MHz frequency increments. Moreover, it takes slightly longer
than 10 ms to change from 1.5 GHz to 1.6 GHz. We believe this is
because the starting time of the stalling loop is not aligned with
the frequency update periods.

Note that in Figure 5, the frequency is 1.5 GHz when the stalling
loop starts. Since the uncore frequency alternates between 1.4 GHz
and 1.5 GHz with no uncore utilization (cf. Section 3.1), it is also
possible that the frequency is 1.4 GHz when the loop starts.
Frequency decrease. We use a similar method to measure how
the uncore frequency decreases. Specifically, we launch a thread
which first runs a stalling loop and then switches to a nop loop.
The recorded uncore frequency trace is shown in Figure 6: once
the stalling loop stops, the frequency decreases by 100 MHz every
10 ms, until it reaches 1.5 GHz (and starts to fluctuate around 1.5
GHz). Again, similar results apply when using a traffic loop.

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

3.4 UFS across Processors
After analyzing UFS within a processor, now we study how UFS
works across processors (sockets). Figure 7 shows the uncore fre-
quency traces for both processors when starting a stalling loop on
a core of Processor 0. As discussed earlier, the uncore frequency
of Processor 0 increases after the loop starts. Interestingly, the un-
core frequency of Processor 1 also increases, even though there
is nothing running on Processor 1 that can trigger this increment.
In addition, the frequency increment on Processor 1 starts about
10 ms later than the increment on Processor 0. Thus, during the
frequency adjustment period, the uncore frequency of Processor
1 is always 100 MHz less than the uncore frequency of Processor
0. Eventually, the uncore frequency of Processor 1 stabilizes at 2.3
GHz instead of 2.4 GHz.

We perform further tests where we run different workloads on
Processor 0 to make its uncore frequency stay at different levels
(e.g., 2.1 GHz). Then we examine the uncore frequency of Processor
1. It turns out that the uncore frequency adjustment on Processor
1 always starts later than the one on Processor 0. In addition, its
stabilized frequency is always the same or slightly lower than the
one of Processor 0.

3.5 Summary of UFS Behavior
The UFS behavior discussed in this section can be summarized as
follows:

- The uncore has different operating points in 100 MHz frequency
increments. The system status is checked about every 10 ms to
decide whether to increase, decrease, or maintain the uncore
frequency.

- The uncore frequency is influenced by the uncore utilization;
higher utilization leads to higher frequency (within the allowed
frequency range).

- The uncore frequency is also affected by the proportion of active
cores stalled due to cache/memory accesses; the uncore remains
at the maximum frequency when more than 1/3 of the active
cores on the processor are stalled.

- The uncore frequencies of different processors (in the same sys-
tem) are correlated: when the uncore frequency of one processor
increases, the ones of other processors increase as well.

Note that this summary does not represent the complete design
of UFS. There might be other factors that can affect the uncore
frequency. Our goal is to utilize UFS to build a covert channel,
rather than uncovering every detail about UFS.

4 UFS-BASED COVERT CHANNEL
We use the findings in Section 3 to build the first covert channel
based on UFS. The basic idea of the sender is to transmit information
by manipulating the uncore frequency (through controlling the
workload it executes). Simultaneously, the receiver obtains the
information by monitoring the uncore frequency. In this section,
we first introduce the threat model, and then provide an in-depth
discussion of this channel’s details.

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

Un
co

re
Fre

qu
en

cy
(G

Hz
) P r o c e s s o r 0

 P r o c e s s o r 1

Figure 7: The uncore frequency trace upon initiating the
stalling loop, for both processors.

4.1 Threat Model
Like all other covert channels, the UFS-based covert channel in-
volves two parties: the sender and the receiver. We assume that
the sender and the receiver are two unprivileged processes or vir-
tual machines that are either 1) running on the same processor
(but different cores) or 2) running on the same computing system
(but different processors). We also assume the processors in the
system are Intel processors that dynamically adjust their uncore
frequency using UFS (i.e., UFS enabled). In addition, the sender and
the receiver agree on pre-defined channel protocols, such as the
synchronization protocol.

Apart from the above, no additional assumptions are made on
the sender or the receiver. For example, we do not assume memory
sharing techniques (e.g., page deduplication [4]) or HugePages
which are required in many uncore covert channels (e.g., [36, 42,
63, 65]). We also do not require memory allocations/accesses across
non-uniform memory access (NUMA) domains, unlike some prior
cross-processor covert channels [57].

4.2 Measuring Uncore Frequency
The receiver in the UFS-based covert channel needs to monitor
the uncore frequency, in order to receive information. In Section 3,
we obtain the uncore frequency by reading the MSR. However,
accessing MSRs is generally only allowed for privileged users. Since
we do not require the receiver to have privileged permission in the
threatmodel, we need to find a different andmore accessiblemethod
to probe the uncore frequency.

Our insight is that, the uncore frequency can be obtained indi-
rectly, by measuring the access latencies to uncore components
(e.g., the LLC). Intuitively, a lower uncore frequency means that
the uncore components are working at a lower speed, resulting
in slower accesses to those components (and vice versa). Figure 8
shows the LLC access latencies at various uncore frequencies. We
force the uncore to operate at a certain frequency by setting the
minimum and maximum uncore frequencies to be the same (cf.
Figure 1). It is shown that, for a given LLC slice, the average access
latency decreases as the uncore frequency increases. Consequently,
the receiver can use the LLC access latency to accurately determine
the uncore frequency.
Measurement noise. Listing 3 shows the code snippet of the
measurement loop in the receiver: it sequentially accesses every

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(a) 0-hop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(b) 1-hop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(c) 2-cop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(d) 3-hop LLC access

Figure 8: The LLC access latencies under different uncore
frequencies; the latencies are measured all on core (3,3). 0-
hop latencies, 1-hop latencies, 2-hop latencies, and 3-hop
latencies are collected when accessing LLC slice (3,3), LLC
slice (2,3), LLC slice (2,2), and LLC slice (2,1), respectively. The
latencies are collected in a 10 ms window.

cache line in the eviction list and times the access. All of these
accesses should hit in the LLC. Since this measurement loop creates
a lot of LLC accesses, it is essential to know how this loop affects the
uncore frequency. If running this loop makes the uncore constantly
stay at a very high frequency, it will be difficult or even impossible
for the sender to manipulate the uncore frequency (to send data).
In fact, we found that when only running this loop, the uncore
frequency stays low (at 1.5 GHz). This is because the memory
fences used in the loop keep the LLC access density relatively low.

/* EV_list[m] contains the addrs the evic. list. */
while ((i++) < Total_Measure) {

for(j = 0; j < m; j++) {
mfence ();
lfence ();
t1 = rdtscp ();
memaccess(EV_list[j]);
t2 = rdtscp ();
access_latency[i*m+j] = t2-t1;}}

Listing 3: The measurement loop in the receiver.

4.3 UF-variation
In this section, we explain the covert channel in detail. For gen-
erality, in the rest of this paper we use freq_max to represent the
maximum uncore frequency (2.4 GHz on our processor), and use

Algorithm 1: The UF-variation Covert Channel
Input: Tfreq_max : the LLC latency at freq_max.
Input: Tfreq_min : the LLC latency at freq_min.
Input: message[n]: the n-bit message to be transmitted.

Sender:
// Algorithm steps for the sender
for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 + + do

sync_channel();
if message[i] == 1 then

stalling_loop(); // Or a heavy LLC traffic loop
end

end

Receiver :
// Algorithm steps for the receiver
for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 + + do

sync_channel();
T1 = measure_avg_LLC_latency();
wait();
T2 = measure_avg_LLC_latency();
if T2 < T1 or T1 = T2 = Tfreq_max then

Received a bit “1”;
end
if T2 > T1 or T1 = T2 = Tfreq_min then

Received a bit “0”;
end

end

freq_min to represent the minimum active uncore frequency (1.5
GHz on our processor).

4.3.1 Channel Protocol. Intuitively, with UFS, the sender can en-
code the data into the uncore frequency values: to send different
data, the sender creates different amounts of LLC traffic (cf. Figure 3)
or different levels of core stalling to make the uncore frequency stay
at different levels. However, we do not use this approach because
it results in a very long transmission interval and thus a limited
transmission rate. In Figure 5, the uncore frequency increases by
100 MHz every time the hardware checks the system status (every
10 ms), during the frequency adjustment period. We found that this
only happens when we apply heavy LLC traffic or have severely
stalled cores (where the stabilized frequency is freq_max). In con-
trast, with lighter LLC traffic or less severely stalled cores where the
stabilized frequency is lower than freq_max, the uncore frequency
is not increased in every 10 ms during the adjustment period. As a
result, it takes much longer for the uncore frequency to adjust. For
example, when launching one thread accessing the local LLC slice
(where the stabilized frequency is 2.1 GHz, cf. Figure 3), it takes
over 50 ms for the uncore frequency to even change from 1.5 GHz
to 1.6 GHz.

Thus, in our covert channel, we only use heavy LLC traffic or
severely stalled cores (to control the uncore frequency). This en-
sures that the uncore frequency changes frequently (every 10 ms),
which allows a shorter transmission interval and thus a higher
transmission rate.

The covert channel we propose, named UF-variation, encodes
data into the uncore frequency variation. The detailed channel
protocol is shown in Algorithm 1. The sender uses the stalling loop
(Listing 2) which can severely stall the core to control the uncore
frequency5. 1-bit of data is transmitted in each transmission interval.
To send a bit “1”, the sender executes this loop and the uncore
frequency increases every 10 ms (unless it’s already at freq_max).
To send “0”, the sender does not execute the loop and the frequency
decreases every 10 ms (unless it’s already at freq_min). On the
other hand, the receiver monitors the LLC access latencies, and

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

compares the average latency near the beginning of the interval
(T1) and the average latency near the end of the interval (T2). If
1) T2 < T1 or 2) both T1 and T2 match the latency at freq_max, it
means the uncore frequency is increasing or staying at freq_max
in this interval. Thus, the receiver receives a bit “1”. Otherwise, if
1) T2 > T1 or 2) both T1 and T2 match the latency at freq_min, it
means the uncore frequency is decreasing or staying at freq_min,
and the receiver gets a bit “0”.

In this channel, the transmission interval should be long enough
for the frequency to change (i.e., at least 10 ms). Figure 9 provides
an example of sending “1101001011” through this channel. In the
first interval, the sender sends “1” by executing the stalling loop,
the frequency increases from 1.5 to 1.8 GHz and the LLC latency de-
creases from 79 to 71 cycles. Then in the second interval, the sender
continues the stalling loop to send “1”, the frequency continues to
increase from 1.8 to 2.2 GHz and the LLC latency further decreases
from 71 to 63 cycles. In the third interval, the sender sends “0” and
stops the stalling loop, the frequency thus decreases from 2.2 to 1.9
GHz and the LLC latency increases from 63 to 68 cycles.

0 1 0 0 2 0 0 3 0 0 4 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

Un
co

re
Fre

qu
en

cy
(G

Hz
)

6 0

7 0

8 0

9 0

1 0 0

1 1 0

 LL
C A

cce
ss

La
ten

cy
(cy

cle
s)

1 01 1 1 1 10 0 0

Figure 9: The LLC access latency trace and the corresponding
uncore frequency trace when sending “1101001011” through
the channel. The transmission interval is 38 ms. The LLC
access latencies are 1-hop latencies.

4.3.2 Channel Capacity. In this section, we evaluate the through-
put of UF-variation as a cross-core covert channel and a cross-
processor covert channel, respectively.
Configuration.We create a proof-of-concept implementation of
UF-variation, where the sender and the receiver are single-threaded
processes that synchronize using time stamp counters. The receiver
calculates the average LLC latencies for the first and last 5 ms in
an interval and compares them. We use the metric channel capacity
(as in [9, 52]) to quantify the throughput performance. It can be
calculated by multiplying the raw transmission rate with (1−𝐻 (𝑒)),
where 𝑒 represents the bit error rate and 𝐻 denotes the binary
entropy function.

Figure 10 shows the channel capacities and bit error rates of
UF-variation under different raw transmission rates (i.e., different
transmission intervals). When the transmission rate is low (e.g.,
below 47 bit/s for the cross-core channel), the error rate is very low
and remains almost constant. Thus, the channel capacity increases
proportionally to the transmission rate. When the transmission rate
5The sender can also use a heavy traffic loop (cf. Listing 1) instead of a stalling loop.

is higher (i.e., intervals are smaller), the error rate starts to increase,
which causes a decrease in the channel capacity. In the cross-core
scenario, the channel capacity peaks at 46 bit/s given a transmission
rate of 47.6 bit/s (interval of 21 ms). In the cross-processor scenario,
the capacity peaks at 31 bit/s given a transmission rate of 33 bit/s
(interval of 33 ms). Although the channel capacity of UF-variation is
much lower than many prior uncore covert channels, it is effective
under a wider range of situations than prior channels. We discuss
the details of this later in Section 4.4.

0 2 0 4 0 6 0
1 0

3 0

5 0

7 0 C r o s s - c o r e c h a n n e l
 C r o s s - p r o c e s s o r c h a n n e l

T r a n s m i s s i o n R a t e (b p s)

Ch
an

ne
l C

ap
ac

ity
(bi

t/s
)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)

Figure 10: The channel capacities and error rates of UF-
variation, in the cross-core and cross-processor scenarios,
respectively.

4.3.3 Channel Reliability. Like other uncore covert channels, UF-
variation can be affected by noise from other processes running
on this system. There are mainly two categories of noise that can
influence UF-variation. First, the execution of other processes may
affect the proportion of the active cores that are stalled, and thus
affect the uncore frequency. For example, in Algorithm 1, the sender
only launches one thread and uses the stalling loop to control
the uncore frequency. This works well when only the sender and
receiver are using the processor: when the sender sends a “1”, 1/2
of the active cores are stalled, causing the uncore frequency to rise.
However, if there are two threads from other processes running on
this processor (which do not stall the cores), only 1/4 active cores
are stalled when the sender sends a “1”. Consequently, the uncore
frequency does not increase, and the receiver cannot differentiate
between “1” and “0”. Nevertheless, this type of noise can always be
avoided by using the traffic loop to control the uncore frequency
instead. Moreover, if the sender can access multiple cores, this
issue can be resolved by stalling multiple cores simultaneously. For
example, on a 16-core processor, if the sender stalls 6 cores, then it
is guaranteed that over 1/3 active cores are stalled when the sender
sends a “1”.

Table 2: The maximum channel capacities of UF-variation
(as a cross-core channel) with the stress-ng tool.

stress-ng -N N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9
Capacity (bit/s) 8.6 7.2 6.8 5.1 4.4 3.0 2.4 0.2 ∼0

Second, other processes with heavy LLC utilization or stalling
loops may keep the uncore frequency high even when the sender

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

Table 3: The comparison of uncore covert channels; ✓ means the channel is functional while ✗ means it is not.

Attack
technique

Leakage
source

Prerequisites Defenses Reliability
No shared mem. No clflush No TSX Random. LLC Fine partition Coarse partition stress-ng —cache 4

Flush+Reload [65]
Data reuse

✗ ✗ ✓ ✓ ✗ ✗ ✓
Flush+Flush [25] ✗ ✗ ✓ ✓ ✗ ✗ ✓
Reload+Refresh [8] ✗ ✗ ✓ ✗ ✗ ✗ ✓

Prime+Probe [42]
LLC set conflict

✓ ✓ ✓ ✗ ✗ ✗ ✓
Prime+Abort [14] ✓ ✓ ✗ ✗ ✗ ✗ ✓
SPP [56] ✓ ✓ ✓ ✓ ✗ ✗ ✓

Mesh-contention [11] Interconnect contention ✓ ✓ ✓ ✓ ✗ ✗ ✓
Ring-contention [50] ✓ ✓ ✓ ✓ ✗ ✗ ✓

IccCoresCovert [30] PMU contention1 ✓ ✓ ✓ ✓ ✓ ✗ ✓

Uncore-idle [9] Idle power control ✓ ✓ ✓ ✓ ✓ ✓ ✗

UF-variation UFS ✓ ✓ ✓ ✓ ✓ ✓ ✓
1It cannot be defended by partitioning, but can be defended using a per-core voltage regulator in the PMU.

sends a “0”. Here we test the channel capacity of UF-variation
while running stress-ng —cache N to stress the CPU cache in the
background (using N threads), similar to prior work [11, 28, 50]. The
results are shown in Table 2. The channel is affected by the phases
where stress-ng keeps the uncore frequency at freq_max. The
channel capacity is lower when those phases appear more often
or last longer. As shown in the table, UF-variation can tolerate
the cache stressing when N < 9. When N is higher, the error rate
becomes excessive and the covert channel is no longer functional.
We compare the reliability of UF-variation to the reliabilities of
other covert channels in Section 4.4.

4.4 Comparison of Uncore Covert Channels
Table 3 compares UF-variation to the existing uncore covert channel
techniques based on prerequisites, robustness against defenses, and
reliability.
Prerequisites. Covert channels typically have some requirements
for the system setup. The most fundamental requirement for an
uncore covert channel is co-location, i.e., the sender and receiver
are able to run simultaneously on the same system. In addition to
this basic prerequisite, some uncore covert channels have further
requirements. Common additional requirements include memory
sharing, the presence of the clflush instruction (or similar in-
structions), and transactional memory techniques (e.g., Intel TSX).
Although these requirements facilitate powerful covert channels
in terms of speed and reliability, they also significantly restrict the
channel’s applicability. For example, memory sharing is discour-
aged in cloud environments, and special instructions like clflush
may not be accessible to users in non-native environments (e.g.,
within a browser).
Effectiveness under defenses. In recent years, numerous defense
approaches against uncore covert channels have been proposed. It
is expected that real processors will soon implement one or more
of these defenses. Thus, it is important to know whether a covert
channel remains functional under a specific defense mechanism.
The main lines of defense designs are based on randomization and
isolation. First, by randomizing the address-to-set mapping in the
LLC (e.g., [22]), it becomes challenging to force or observe LLC
set conflicts, which are essential for many LLC covert channels.
Arguably, a more promising method is partitioning uncore compo-
nents among users (e.g., [6, 15, 55, 59]), since most uncore covert

channels are based on uncore resource contention/conflict. We
discuss two types of partitioning mechanisms here.

The first one is a coarse-grained partitioning approach where
the sender and receiver are on different processors in the system
and the NUMA-strict policy is enforced, i.e., memory allocation-
s/accesses across NUMA domains are not allowed. The second one
is a more fine-grained partitioning mechanism, where the sender
and receiver can run on the same processor but in different secu-
rity domains. In this case, all the uncore buffering structures such
as LLC slices and queues in the MCs are partitioned among do-
mains: for example, with two domains, each domain is assigned
with half of the LLC slices (8 on our processor). Additionally, all
the communication paths such as the interconnect work with a
time-multiplexed scheduling policy so that traffic from different
domains is partitioned and served in different time periods [61],
avoiding contention6.
Reliability. We evaluate the reliabilities of the channels by ex-
amining their functionalities while running stress-ng —cache 4
in the background, i.e., whether the receiver can still distinguish
between “1” and “0”. Note that we use four stressing threads here
because this results in a processor load of 37.5%, which is close to
the processor load observed in modern data centers [21].
Comparison. As shown in Table 3, covert channels based on data
reuse usually require memory sharing and special-purpose instruc-
tions, meaning they can be defended by simply disabling the re-
quired features. Covert channels based on LLC set conflicts typically
do not have additional requirements; however, most of them can
be mitigated by randomized LLC designs (other than SPP), and all
of them can be prevented by uncore partitioning. Covert channels
based on interconnect contention do not have additional require-
ments as well, but they also cannot work under either of the two
partitioning designs. IccCoresCovert relies on the contention for
the voltage regulator in the PMU. Thus, it cannot work under the
coarse-grained partitioning where the PMU is no longer shared. In
addition, all these above-mentioned covert channels remain func-
tional with four cache stressing threads.

Uncore-idle (cf. Section 2.3) and UF-variation are the only two
channels that cannot be stopped by any of the listed defenses. Unlike

6We do not assume a spatial partitioning design like Intel Sub-NUMA Clustering [34]
for preventing interconnect contention, since the traffic to peripheral devices from
different domains may still contend in this scenario.

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

other uncore channels, these two channels are not based on hard-
ware contention or conflict. Thus, randomizing the LLC mapping
or partitioning uncore resources cannot prevent them. However,
Uncore-idle which is based on the uncore idle power management,
is highly susceptible to noise: as long as one core in the entire sys-
tem is fully active, all the uncores (in all the processors) are active
and the covert channel no longer exists. In contrast, UF-variation
demonstrates better reliability.

5 SIDE CHANNEL ATTACKS
In this section, we provide a preliminary study on exploiting UFS
for side-channel attacks. The two factors that affect the uncore
frequency (uncore utilization and core stalling) can both be used to
construct side-channel attacks. Here we focus on the latter.
Attack methodology. As explained in Section 3.2, the uncore fre-
quency is related to the proportion of active cores that are stalled.
This proportion (and thus the frequency) may change depending on
whether the victim’s core(s) are active, reflecting the victim’s core(s)
utilization. Specifically, the attacker executes a stalling thread and a
non-stalling thread. Then, when the victim’s core(s) are inactive or
minimally utilized, the uncore frequency stays at freq_max, since
more than 1/3 of the active cores are stalled. However, if the vic-
tim’s core(s) become active (but not stalled), the uncore frequency
decreases because less than 1/3 active cores are stalled now. The
core(s) activity may be related to some sensitive information of the
victim, as shown in prior work [13]. Here we show two example
attacks, file size profiling and website fingerprinting.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)
0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)

1 M B
0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)

3 M B
0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)

5 M B

Figure 11: The uncore frequency traces captured while the
victim compresses files with varying sizes.

File size profiling. In this case, the victim is executing a python
program to compress a file. The total execution time of the program
is correlated with the size of the file. As a result, if the attacker
determines the execution time of this program by monitoring the
uncore frequency, the attacker can deduce the file size and it might
even be able to further infer which specific file the victim is com-
pressing. The attacker collects the uncore frequency every 3 ms and
the captured frequency traces are shown in Figure 11. When the
victim is compressing a smaller file such as a 1MB file, the uncore
frequency is only at freq_min for a brief period. In contrast, when
compressing a larger file (e.g., 5MB), the uncore frequency stays
at freq_min for much longer time. The attacker is able to distin-
guish the file sizes at a granularity of 300KB with an accuracy of
over 99%. Note that the attacker is running the helper threads (the
stalling/non-stalling threads, as explained above) while collecting
the trace.

Website fingerprinting. The victim in this attack is a user brows-
ing webpages in a browser, and the attacker aims to determine the
website the victim is accessing through the uncore frequency trace.
Similar to previous fingerprinting-based attacks [10, 13, 57], we
leverage machine learning to develop an attack with two phases:
the training phase and the attack phase. In the training phase, the
attacker collects uncore frequency traces for 100 websites while
accessing them. The attacker then uses these traces to train an RNN
classifier. We use the same model and hyperparameters as [57].
During the attack phase, when the victim is accessing a website, the
attacker collects the uncore frequency trace and feeds it to the RNN
classifier. In both phases, the attacker records the uncore frequency
every 3 ms. Note that in both phases the attacker also needs to run
the helper threads (the stalling/non-stalling threads), as explained
in the attack methodology before.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)
0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

a m a z o n . c o m

0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

g o o g l e . c o m

0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

h o t c r p . c o m
(l o g i n s u c c e e d)

0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

h o t c r p . c o m
(l o g i n f a i l)

Figure 12: The uncore frequency traces captured while the
victim is accessing varying domains.

Figure 12 shows two examples of the collected traces. The top-1
accuracy of our attack is 82.18%, i.e., the attacker has an 82.18%
chance of correctly predicting which website a trace corresponds
to. The top-5 accuracy, the rate at which the correct website is
one of the classifier’s top five predictions, is 91.48%. In addition to
identifying the accessed website, the attacker can also learn how
the website is used. For example, the attacker is able to differentiate
between successful and unsuccessful login attempts on hotrcrp.com.

6 DISCUSSION
6.1 Countermeasures
Fixing the uncore frequency. The prerequisite of UF-variation is
that the uncore frequency is dynamically adjusted with UFS (based
on the running workloads). Thus, to prevent this covert channel, the
system software can disable UFS. That is, the system software can
set the minimum and maximum uncore frequencies to be the same
(cf. Figure 1), forcing the uncore to operate at a fixed frequency
(freq_fix). However, it may be difficult to determine the value of
freq_fix. Using a high frequency increases the energy consump-
tion. For example, for graph analytics applications [19], fixing the
uncore frequency at freq_max increases the energy consumption
by 7%. In contrast, using a low uncore frequency reduces the per-
formance. A more desirable method is to randomize the uncore
frequency: instead of always using a particular uncore frequency,
every certain period of time, the system software randomly selects
a frequency (from within the allowed frequency range) to set as
the uncore frequency (i.e., freq_fix). This can guarantee security

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yanan Guo, Dingyuan Cao, Xin Xin, Youtao Zhang, and Jun Yang

while maintaining a balance between the performance and energy
consumption.
Restricting the frequency range for UFS. Using a smaller fre-
quency range for UFS, compared to the default range, can mitigate
the side-channel attacks. From our experiments, limiting the range
for UFS to no larger than 0.2 GHz (e.g., from 1.5 GHz to 1.7 GHz)
makes it very difficult to distinguish the uncore frequency traces
for different websites. However, this method cannot stop the covert
channel (UF-variation). When using a smaller frequency range for
UFS, the temporal resolution of UFS remains the same as before (i.e.,
10 ms). Further, some of the conditions for triggering frequency in-
crease/decrease also remain the same. For example, with more than
1/3 active cores being stalled, the uncore frequency still increases by
0.1 GHz every 10 ms, until reaching the highest frequency allowed.
Thus, the channel capacity of UF-variation remains the same as
long as the maximum and minimum frequencies for UFS are not
set to be equal (cf. Figure 1).
Maintaining high uncore utilization. The UFS-based covert/side
channels can also be prevented by maintaining high uncore utiliza-
tion: one can use a background thread that is always stressing the
uncore to make it stay at freq_max.

6.2 Related Work
We have already introduced existing uncore covert channels in
Section 2.3. In this section, we discuss prior covert channels (and
side channel attacks) based on the core frequency variations.
Channels based on Turbo Boost. Kalmbach et al. [37] discovered
that when Turbo Boost is enabled, the maximum core frequency
(on Intel processors) is selected based on the number of active cores.
Based on this, they built a new covert channel where information
is encoded into the maximum core frequency by placing load on a
certain amount of cores. Additionally, Wang et al. [60] discovered
that with Turbo Boost, the core frequency adjustments depend on
the power consumption, which is data dependent. This indicates
that the core frequency adjusts based on the data it is processing,
resulting in different performance with different data. They built
an attack that undermines constant-time cryptography algorithms
based on this observation.
Channels based on frequency throttling. Khatamifard et al. [39]
found that CPU power management systems dynamically adjust
the CPU core frequencies to prevent exceeding the power limits,
i.e., the core frequencies are related to the available power head-
room. They used this principle to construct new covert channels
named POWERT channels. In addition, Liu et al. [41] showed that
a privileged adversary that can reduce the power limits can extract
AES-NI keys (from an enclave) based on frequency variations.

7 CONCLUSION
In this paper, we presented the first covert channel based on UFS.
We showed that the uncore utilization and the proportion of ac-
tive cores that are stalled are two key factors affecting the uncore
frequency. Based on this observation, we developed a new covert
channel, UF-variation, with a channel capacity of 46 bit/s. We fur-
ther showed that although UF-variation has lower capacities than
previous uncore covert channels, it remains functional even with
uncore partitioning in place, while previous channels do not. Finally,

we demonstrated that it is possible to build side channel attacks
utilizing UFS.

8 ACKNOWLEDGEMENT
We thank the anonymousMICRO 2023 reviewers for their insightful
feedback. We would also like to thank Andrew Zigerelli for his
valuable comments. This work is supported in part by US National
Science Foundation #2154973, #1910413, #2011146.

REFERENCES
[1] Onur Acıiçmez. 2007. Yet another microarchitectural attack: Exploiting I-cache.

In ACM workshop on Computer security architecture.
[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting secret

keys via branch prediction. In Topics in Cryptology–CT-RSA 2007: The Cryptogra-
phers’ Track at the RSA Conference.

[3] Samira Mirbagher Ajorpaz, Daniel Moghimi, Jeffrey Neal Collins, Gilles Pokam,
Nael Abu-Ghazaleh, and Dean Tullsen. 2022. EVAX: Towards a Practical,
Pro-active & Adaptive Architecture for High Performance & Security. In 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[4] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density
by using KSM. In Proceedings of the linux symposium.

[5] Zelalem Birhanu Aweke and Todd Austin. 2018. Øzone: Efficient execution with
zero timing leakage for modern microarchitectures. In Design, Automation & Test
in Europe Conference & Exhibition (DATE).

[6] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In USENIX Security
Symposium.

[7] Malini K Bhandaru, Ankush Varma, James R Vash, Monica Wong-Chan, Eric J
DeHaemer, Christopher Allan Poirier, Scott P Bobholz, et al. 2016. Dynamically
controlling interconnect frequency in a processor. US Patent 9,323,316.

[8] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth. 2020.
Reload+Refresh: Abusing cache replacement policies to perform stealthy cache
attacks. In USENIX Security Symposium.

[9] Paizhuo Chen, Lei Li, and Zhice Yang. 2021. Cross-VM and Cross-Processor
Covert Channels Exploiting Processor Idle Power Management.. In USENIX
Security Symposium.

[10] Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. 2022. There’s always
a bigger fish: a clarifying analysis of a machine-learning-assisted side-channel
attack. In Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA).

[11] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and
Mengjia Yan. 2022. Don’t Mesh Around: Side-Channel Attacks and Mitigations
on Mesh Interconnects. In USENIX Security Symposium.

[12] Shuwen Deng, Bowen Huang, and Jakub Szefer. 2022. Leaky frontends: Security
vulnerabilities in processor frontends. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA).

[13] Debopriya Roy Dipta and Berk Gulmezoglu. 2022. DF-SCA: Dynamic Frequency
Side Channel Attacks are Practical. arXiv preprint arXiv:2206.13660 (2022).

[14] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A timer-free high-precision L3 cache attack using Intel TSX. In
USENIX Security Symposium.

[15] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 8, 4 (2012), 1–21.

[16] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Mar-
quez, and Kevin Barker. 2021. Leaky buddies: Cross-component covert channels
on integrated cpu-gpu systems. In ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA).

[17] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[18] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Un-
derstanding and mitigating covert channels through branch predictors. ACM
Transactions on Architecture and Code Optimization (TACO) 13, 1 (2016), 1–23.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. Acm sigplan notices 47, 4 (2012),
37–48.

[20] Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. Lattice priority scheduling: Low-overhead timing-channel protec-
tion for a shared memory controller. In IEEE International Symposium on High

Uncore Encore: Covert Channels Exploiting Uncore Frequency Scaling MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Performance Computer Architecture (HPCA).
[21] Peter Garraghan, Paul Townend, and Jie Xu. 2013. An analysis of the server

characteristics and resource utilization in google cloud. In IEEE International
Conference on Cloud Engineering (IC2E).

[22] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unter-
luggauer, Stefan Mangard, and Daniel Gruss. 2023. Scatter and Split Securely:
Defeating Cache Contention and Occupancy Attacks. In IEEE Symposium on
Security and Privacy (SP).

[23] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures.. In NDSS.

[24] Ben Gras, Kaveh Razavi, Herbert Bos, Cristiano Giuffrida, et al. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks..
In USENIX Security Symposium.

[25] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[26] Yanan Guo, Xin Xin, Youtao Zhang, and Jun Yang. 2022. Leaky way: a conflict-
based cache covert channel bypassing set associativity. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[27] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2021. Ivcache: De-
fending cache side channel attacks via invisible accesses. In Proceedings of the
2021 on Great Lakes Symposium on VLSI (GLSVLSI).

[28] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2022. Adversarial
Prefetch: New cross-core cache side channel attacks. In IEEE Symposium on
Security and Privacy (S&P).

[29] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. 2015. An energy efficiency feature survey of the
intel haswell processor. In IEEE international parallel and distributed processing
symposium workshop.

[30] Jawad Haj-Yahya, Lois Orosa, Jeremie S Kim, Juan Gómez Luna, A Giray Yağlıkçı,
Mohammed Alser, Ivan Puddu, and Onur Mutlu. 2021. IChannels: exploiting
current management mechanisms to create covert channels in modern processors.
In ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA).

[31] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mohit
Tiwari. 2019. Cyclone: Detecting Contention-Based Cache Information Leaks
Through Cyclic Interference. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 57–72.

[32] Intel. 2023. Intel® 64 and IA-32 architectures optimization reference manual.
Available at https://cdrdv2.intel.com/v1/dl/getContent/671488.

[33] Intel. 2023. Intel® 64 and IA-32 architectures software developer’s manual.
Available at https://cdrdv2.intel.com/v1/dl/getContent/671200.

[34] Intel. 2023. Intel® Xeon® Processor Scalable Family Technical Overview. Avail-
able at https://www.intel.com/content/www/us/en/developer/articles/technical/
xeon-processor-scalable-family-technical-overview.html.

[35] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S $ A: A shared cache
attack that works across cores and defies VM sandboxing–and its application to
AES. In IEEE Symposium on Security and Privacy (S&P).

[36] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor cache
attacks. In ACM on Asia conference on computer and communications security
(Asia CCS).

[37] Manuel Kalmbach, Mathias Gottschlag, Tim Schmidt, and Frank Bellosa. 2020.
Turbocc: A practical frequency-based covert channel with intel turbo boost. arXiv
preprint arXiv:2007.07046 (2020).

[38] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.
2016. A high-resolution side-channel attack on last-level cache. In Annual Design
Automation Conference (DAC).

[39] S Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose, and Ulya R
Karpuzcu. 2019. Powert channels: A novel class of covert communicationexploit-
ing power management vulnerabilities. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA).

[40] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. 2016. Path Confidence Based Lookahead Prefetching.
In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[41] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. 2022. Fre-
quency throttling side-channel attack. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[42] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security and
Privacy (S&P).

[43] Mulong Luo, Andrew C Myers, and G Edward Suh. 2020. Stealthy tracking of
autonomous vehicles with cache side channels. In USENIX Security Symposium
(USENIX Security).

[44] Mulong Luo, Wenjie Xiong, Geunbae Lee, Yueying Li, Xiaomeng Yang, Amy
Zhang, Yuandong Tian, Hsien-Hsin S Lee, and G Edward Suh. 2023. Autocat: Re-
inforcement learning for automated exploration of cache-timing attacks. In IEEE

International Symposium on High-Performance Computer Architecture (HPCA).
[45] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS.

[46] John D. McCalpin. 2018. Address hashing in Intel processors.
[47] Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba

Garza, Nael Abu-Ghazaleh, and Daniel A Jiménez. 2020. Perspectron: Detecting
invariant footprints of microarchitectural attacks with perceptron. In 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[48] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.
Memjam: A false dependency attack against constant-time crypto implementa-
tions. International Journal of Parallel Programming (2019).

[49] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Cryptographers’ track at the RSA conference.

[50] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord of
the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In USENIX Security Symposium.

[51] Colin Percival. 2005. Cache missing for fun and profit.
[52] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security Symposium.

[53] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).

[54] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M.
Tullsen, and Ashish Venkat. 2021. I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA).

[55] Daniel Townley, KeremArıkan, YuDavid Liu, Dmitry Ponomarev, and Oğuz Ergin.
2022. Composable Cachelets: Protecting Enclaves from Cache Side-Channel
Attacks. In 31st USENIX Security Symposium.

[56] Tarunesh Verma, Achilleas Anastasopoulos, and Todd Austin. 2022. These Aren’t
The Caches You’re Looking For: Stochastic Channels on Randomized Caches.
In IEEE International Symposium on Secure and Private Execution Environment
Design (SEED).

[57] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. MeshUp: Stateless
cache side-channel attack on CPU mesh. In IEEE Symposium on Security and
Privacy (SP).

[58] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014. Timing channel protec-
tion for a shared memory controller. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA).

[59] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel
protection. In Proceedings of the 53rd Annual Design Automation Conference.

[60] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
Power {Side-Channel} Attacks Into Remote Timing Attacks on x86. In 31st
USENIX Security Symposium.

[61] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan Kastner,
Frederic T Chong, and Timothy Sherwood. 2013. SurfNoC: A low latency and
provably non-interfering approach to secure networks-on-chip. ACM SIGARCH
Computer Architecture News 41, 3 (2013), 583–594.

[62] Wenjie Xiong and Jakub Szefer. 2020. Leaking information through cache LRU
states. In IEEE International Symposium on High Performance Computer Architec-
ture (HPCA).

[63] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In IEEE Symposium on Security and Privacy
(S&P).

[64] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are Coherence Pro-
tocol States Vulnerable to Information Leakage?. In IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[65] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A high resolution, low
noise, L3 cache side-channel attack. In USENIX Security Symposium.

[66] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering
(2017).

https://cdrdv2.intel.com/v1/dl/getContent/671488
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture of Intel CPUs
	2.2 CPU Power Management
	2.3 CPU Uncore Covert Channels

	3 UFS Characterization
	3.1 UFS with LLC/Interconnect Utilization
	3.2 UFS with Core Stalling
	3.3 UFS Granularity
	3.4 UFS across Processors
	3.5 Summary of UFS Behavior

	4 UFS-based Covert Channel
	4.1 Threat Model
	4.2 Measuring Uncore Frequency
	4.3 UF-variation
	4.4 Comparison of Uncore Covert Channels

	5 Side Channel Attacks
	6 Discussion
	6.1 Countermeasures
	6.2 Related Work

	7 Conclusion
	8 Acknowledgement
	References

