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Abstract—Modern x86 processors feature many prefetch
instructions that developers can use to enhance performance.
However, with some prefetch instructions, users can more
directly manipulate cache states which may result in powerful
cache covert channel and side channel attacks.

In this work, we reverse-engineer the detailed cache behavior
of PREFETCHNTA on various Intel processors. Based on the
results, we first propose a new conflict-based cache covert
channel named NTP+NTP. Prior conflict-based channels often
require priming the cache set in order to cause cache conflicts.
In contrast, in NTP+NTP, the data of the sender and receiver
can compete for one specific way in the cache set, achieving
cache conflicts without cache set priming for the first time. As
a result, NTP+NTP has higher bandwidth than prior conflict-
based channels such as Prime+Probe. The channel capacity of
NTP+NTP is 302 KB/s. Second, we found that PREFETCHNTA
can also be used to boost the performance of existing side
channel attacks that utilize cache replacement states, making
those attacks much more efficient than before.
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I. INTRODUCTION

Modern processors often comprise many microarchitectural
structures to enhance software performance. However, some
of those structures are shared among applications, which may
result in unintended information flows between applications.
These information flows, when exploited by the adversaries,
can enable powerful covert channel and side channel attacks.
Cache timing covert channel and side channel attacks, or
cache attacks for short, have been demonstrated to be
extremely potent [4], [5], [10], [11], [13], [14], [16], [18],
[19], [20], [24], [25], [26], [32], [37], [38], [40], [45],
[53], [54], [64], [65], [67], [68], [70], [71], [72]. They are
especially powerful primitives used in the more recently
discovered transient execution attacks [8], [9], [28], [30],
[49], [50], [55], [58], [59], [60], [61]. The execution of an
application may cause various state changes to the cache that
is shared with the attacker running on the same platform.
The attacker can then learn these state changes through
timing variations. Cache attacks can be used to surreptitiously
transfer data (in the covert channel case), or infer secrets
from a victim process (in the side channel case), bypassing
sandboxes and software-level privilege boundaries. Cache
attacks work on both the private cache and the last-level cache
(LLC). However, LLC attacks are arguably more powerful

than private cache attacks since the LLC is shared among
physical cores.

Conflict-based cache attacks are an important class of
cache attacks where the attacker (receiver) deliberately causes
cache conflicts to learn the victim’s (sender’s) access pattern.
For example, in Prime+Probe [26], [32], the attacker first
primes a cache set by filling it with the attacker’s cache
lines, and then waits for the victim’s execution: if the victim
accesses her own cache line that is mapped to this set, one
of the attacker’s lines is evicted. Later the attacker probes
the cache set and times the probing to learn whether the
victim accessed her cache line. Conflict-based attacks are
very practical since they usually do not assume any system
features (such as page deduplication). However, when used as
covert channels, their bandwidths are limited. This is because
priming a cache set requires many accesses and takes very
long to finish. For example, to build Prime+Probe on a 16-
way associative LLC, priming the set needs about 16 cache
accesses. In this paper, we seek to answer the following
question:

Is it possible to cause cache conflicts without encountering
the effort in priming the cache set?

x86 processors feature many prefetch instructions. De-
velopers or compilers can use these instructions to inform
the processor that a memory location will be accessed
or modified soon. Then, the processor preloads the data
(usually in cache line level) and places it closer to the CPU
core, in order to accelerate future requests. PREFETCHNTA
is one of the x86 prefetch instructions. When executing
PREFETCHNTA on Intel processors with an inclusive LLC,
the target data is brought into the requesting core’s local
L1 cache as well as the LLC [1], [2]. However, to avoid
LLC pollution, the prefetched data is not placed into the
most recently used position in the LLC set, and will be
chosen for LLC replacement sooner than a regular cache
fill. In this work, we reverse-engineer the detailed cache
behavior of PREFETCHNTA on Intel processors and make
three important observations. First, PREFETCHNTA installs
the target cache line into the LLC set as the eviction candidate.
Second, when PREFETCHNTA hits in the LLC, it does not
update the age of this cache line in the LLC. Third, the
execution time of PREFETCHNTA is related to the location



of the target cache line in the memory hierarchy.
When filling a cache line into the LLC using

PREFETCHNTA, it replaces the current eviction candidate
in the set and then the prefetched line becomes the new
eviction candidate. This means, when two processes both
prefetch their own cache lines into the same LLC set, they
will compete for the eviction candidate position (cache way),
causing conflicts in one way of the LLC set. Based on this, we
propose a new conflict-based cache covert channel, named
NTP+NTP (Non-Temporal Prefetch). In this channel, the
sender and receiver first agree on the LLC set for transmitting
secrets. Then in each iteration of the transmission, the sender
sends one bit by prefetching her cache line into the target LLC
set (for “1”) or not prefetching (for “0”). The receiver receives
the bit by prefetching the receiver’s cache line (which is also
mapped into this target LLC set), and times the prefetch to
determine if it is an LLC miss (for “1”) or not (for “0”). If
the sender prefetches her cache line into the LLC, it evicts
the receiver’s cache line that was prefetched into the same set;
later the receiver’s prefetch will miss in the LLC. We show
that NTP+NTP has very high capacity as a conflict-based
covert channel: on our Skylake processor, the capacity of
NTP+NTP is 302 KB/s which is over 3× than the capacity
of Prime+Probe. To the best of our knowledge, NTP+NTP
is the first conflict-based LLC covert channel that does not
require priming the cache set.

Although NTP+NTP is unlikely a side channel, we found
that PREFETCHNTA can be used in many cache side channel
attacks that are based on replacement state changes to make
the attacks more efficient. This is because PREFETCHNTA
makes it easier for users to manipulate cache replacement
states. For example, Prime+Scope [42] is a cache attack
proposed very recently. Prime+Scope achieves the highest-
to-date temporal resolution for cache attacks, and is thus
very powerful. However, this attack has strict requirements
on the replacement state of the target LLC set. To satisfy
the requirements, it uses a very long access sequence to
prime the LLC set. On our Skylake processor, the priming
comprises 192 cache references and takes about 1900 cycles
to finish. This long priming step limits the attack from
detecting frequent victim events. In contrast, when using
PREFETCHNTA, the priming only needs 33 cache references
and takes about 1000 cycles to finish, resulting in a much
faster attack. In addition, using PREFETCHNTA makes cache
conflicts occur more often and thus makes eviction set
construction faster. In this work, we propose a new eviction
set construction algorithm which significantly outperforms
the state-of-the-art. The source code of our experiments can
be found at https://github.com/PittECEArch/LeakyWay.

II. BACKGROUND

A. Prefetch

Modern x86 CPUs use multiple levels of caches to
store data that are frequently accessed. To further improve

performance, data can be preloaded and placed closer to the
CPU core (e.g., from the LLC to the L1 cache) before they
are needed; this is usually referred to as prefetch. Prefetch
can be performed in two ways. Hardware prefetch is usually
implemented in cache hardware and is transparent to users.
x86 processors support many hardware prefetchers such as
the adjacent line prefetcher [23].

Different than hardware prefetch, software prefetch needs
to be explicitly done by the programmer/compiler. Recent
x86 CPUs offer many instructions for software prefetch,
such as PREFETCHT0, PREFETCHT1, PREFETCHT2, and
PREFETCHNTA [1], [3]. These instructions are used to
hint the processor that a memory location is likely to be
accessed or modified soon, then the processor preloads the
corresponding data (usually in cache line level) into certain
level(s) of cache, thereby accelerating future accesses to
this data. For example, PREFETCHT0 preloads data into
the requesting core’s local L1 cache (and the LLC on
some processors). Software prefetch is an important way
to improve performance. Compilers sometimes automatically
inject prefetch instructions to accelerate loops.

B. Cache Replacement Policy
When the CPU core loads a cache line that is not present

in a cache level (i.e., cache miss), the cache line is usually
filled to this cache level (into a certain set). If the set this
cache line is mapped into is already full, one of the lines that
are currently cached in this set will be evicted to make space
for this new cache line. The cache replacement policy decides
which line should be evicted, i.e., the eviction candidate.
LRU. LRU is one of the most widely used replacement
policies as it provides high cache utilization and thus good
performance. LRU always selects the least recently used
cache line in a set as the eviction candidate. Thus, when
using LRU, we need to track the age of each cache line in a
set. For a w-way associative cache, logw bits are necessary
to record the age of each way (cache line) in a set, for a total
of w logw for each set. This makes tracking and updating
the ages of cache lines very expensive in terms of storage
and latency.
Pseudo LRU. Recent x86 CPUs use pseudo LRU algorithms
to achieve high cache hit rate as well as maintain low age
updating/tracking overhead. Typical Pseudo LRU algorithms
include Tree-LRU [56] and Bit-LRU [33]. Prior work [10]
has reverse engineered that recent Intel Core processors use
Quad-age LRU for their LLCs. With this policy, each cache
line in an LLC set is assigned with two bits to represent its
age. Thus, the maximum (oldest) age for a cache line is 3,
and the minimum (youngest) age is 0. The details of this
policy are shown as follows:
- Insertion policy. When a cache line is filled into the LLC,

its age is initialized as 2.1

1On early Intel processors (before Skylake), sometimes cache lines are
inserted into the LLC with the age initialized as 3.

https://github.com/PittECEArch/LeakyWay


- Replacement policy. When replacement is necessary,
Quad-age LRU searches all the ways in the target LLC
set in order, and evicts the cache line that is stored in
the first way with age 3; if such a way does not exist, it
increases the age of every way by 1 and searches again.

- Updating policy. When an access request from the CPU
core hits in the LLC, the age of the target cache line is
reduced by 1 (if the age is 0 then it will not be changed).

Figure 1 shows an example of how the state of an LLC
set changes with a sequence of CPU requests. In this figure,
the replacement policy checks the cache lines in the set from
the left to right, when looking for the eviction candidate.

C. Cache Attacks

There are typically two types of cache attacks. In the first
type, the attacker passively monitors the contention on certain
cache hardware (e.g., the ring interconnect [39] or L1 cache
ports [36], [69]) to infer the victim’s usage of it. Such attacks
are usually referred to as contention-based attacks or stateless
attacks. The other type is eviction-based attacks, which are
also known as stateful attacks: the attacker actively brings
a cache line/cache set to a certain state, and waits for the
victim to execute (which potentially modifies the state); later
the attacker checks the state of the line/set again to know
whether the victim accessed it and thus changed the state. We
further divide stateful attacks into two categories, based on
whether they rely on the existence of shared data (between
the attacker and victim). Note that in this overview, we only
discuss cross-core attacks where the attacker and victim are
located on different physical cores; most same-core attacks
can be defended by disabling simultaneous multithreading
(SMT), as done by many cloud providers [6], [12], [34].
Attacks with shared data. The required data sharing for
these attacks is usually achieved with page deduplication or
shared libraries. Flush+Reload [68] is a typical attack that
relies on data sharing. In each attack iteration, the attacker
flushes the victim’s cache line (which is shared with the
attacker) from all cache levels, and waits for the victim’s
execution. Later the attacker accesses this cache line and
times the access to determine it is in cache or not: if it is
cached (i.e., faster to access), it means the victim accessed
this cache line and brought it back to cache, otherwise the
victim did not access. Gruss et al. later proposed a variant of
Flush+Reload, named Flush+Flush [18]. Instead of reloading
the victim’s cache line, it flushes this cache line again and
times the flushing to learn the victim’s behavior. This attack
is stealthier than Flush+Reload because it does not generate
any accesses (to the victim’s cache line) and is then hard
to detect using performance counters. Evict+Reload [19] is
another variant of Flush+Reload where the attacker evicts
the victim’s cache line by building set conflicts instead of
flushing it.

Instead of checking whether the victim brought the target

Initial state of the LLC set: 

CPU request: load l1, hits in the LLC.
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Figure 1. The state change details of an LLC set upon CPU requests;
changes after each request are highlighted.

cache line to cache, some attacks work by checking whether
the victim changed the cache state of the target cache line.
For example, in prior work [27], [67], the attacker monitors
the changes to the coherence state of the target cache line.
In Reload+Refresh [10], the attacker instead monitors the
changes to the age of the target cache line (cf. Section II-B).
Attacks without shared data. Attacks that do not assume
data sharing are arguably more practical: security-conscious
operating systems/hypervisors may disable implicit data
sharing across processes/virtual machines. Prime+Probe [26],
[32] is one of such attacks. The attacker first primes the LLC
set that the victim’s cache line is mapped into, by filling
the set with her own cache lines. This evicts the victim’s
cache line. Then after waiting for a period of time, the
attack probes this set (by re-accessing the cache lines in
the priming stage) and measures the probing latency: if the
victim accessed her cache line and brought it back to the
LLC, one of the attacker’s cache lines was evicted and it now
takes longer to probe; if the victim did not access then it is
faster to probe. The prerequisite of Prime+Probe is having an
inclusive LLC: when the victim’s cache line is evicted from
the LLC, it is also evicted from the private caches (if present).
Yan et al. later proposed a directory Prime+Probe attack
which builds set conflicts in the coherence directory [66],
enabling Prime+Probe on platforms with non-inclusive LLCs.
Very recently, Purnal et al. presented an optimization of
Prime+Probe, named Prime+Scope. This attack has much
higher resolution than Prime+Probe. Its details will be
discussed in Section V.
Our goal. The above Prime+Probe type attacks are often
referred to as conflict-based attacks. This is because in these
attacks, the attacker evicts the victim’s cache line by building
set conflicts. As mentioned earlier, these attacks are practical
and powerful. However, when used as covert channels, their
bandwidths are usually very limited: in an attack iteration,
to be able to build and observe set conflicts, the sender and
receiver together need to access at least w+1 cache lines (in



the same set), where w is the set associativity. In this paper,
we aim at finding a way to build conflicts with less cache
references, such that we can have faster cache attacks.

III. CHARACTERIZING THE NON-TEMPORAL
PREFETCH INSTRUCTION

A. Non-Temporal Prefetch

Among the prefetch instructions discussed in Section II-A,
PREFETCHNTA works slightly different than the others:
it minimizes the LLC pollution when fetching data into
the cache hierarchy. To accelerate future accesses from the
requesting core, PREFETCHNTA places the target cache line
into the requesting core’s private cache; with an inclusive
LLC, this cache line has to be also brought into the LLC
(if not already present). However, prefetching a cache line
into the LLC may replace cache lines from other threads
and degrade their performance. According to Intel [1],
using PREFETCHNTA can reduce this disturbance to other
data cached in the LLC: a cache line prefetched with this
instruction will not be placed into the most recently used
position (in the LLC set) and may be chosen for replacement
faster than a regular LLC fill. Thus, when the target cache
line is only accessed once in the entire execution path, the
user should prefetch it using PREFETCHNTA. We reverse
engineer the detailed cache behavior of PREFETCHNTA in
this section, and will explain why this instruction raises
severe security concerns in the next section. In the rest of
this paper, we refer to “prefetch using PREFETCHNTA” as
“prefetch”.

Table I
THE SPECIFICATIONS OF THE TESTED PROCESSORS.

Platform Core i7-6700 Core i7-7700K
Microarchitecture Skylake Kaby Lake
Num of cores 4 4
Frequency 3.4 GHz 4.2 GHz
L1 associativity 8 8
L1 type Private Private
L2 associativity 4 4
L2 type Private, non-inclusive Private, non-inclusive
LLC associativity 16 16
LLC type Shared, inclusive Shared, inclusive

Experiment platform. The experiments in this paper are all
performed on two Intel processors, Core i7-6700 and Core
i7-7700K. The processor parameters are listed in Table I. In
this section we only show the results on the Core i7-6700
processor due to limited space. Note that in this section
we disable the hardware prefetcher to get accurate reverse
engineering results. In the following sections, we enable
the hardware prefetcher when evaluating the attacks for
generality, and avoid triggering the hardware prefetcher using
the techniques in prior work [18], [28].

Step 1: Prepare an empty LLC set.

Step 2: Load l0 to la-1, prefetch la, then load la+1 to lw-1.

Step 3: Load lw (evicts one cache line in this set).

Timing result

Step 4: Load la and time the load.

2...2l12l0 ... 2?la lw-1 2 2...2l12l0 ... 2?la lw-1 2 

                        

0 4 8 1 2 1 61 0 0

2 0 0

3 0 0
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Figure 2. The experiment steps and results for verifying that prefetched
data are evicted earlier than other data.

B. Key Properties

1) Insertion Policy: We first verify that a prefetched cache
line is evicted faster/sooner than a loaded cache line in the
same LLC set, using a four-step experiment. To prepare the
experiment, we construct an eviction set, i.e., a group of
cache lines that are all mapped to one specific set (the target
set) in the LLC. This eviction set consists of w+ 1 cache
lines where w is the set associativity of the LLC (16 for our
processors). These cache lines are named l0, l1,..., lw. As
shown in Figure 2, this experiment consists of the following
steps:

Step 1: We make the target LLC set empty. This can be
achieved by loading the cache lines in the eviction
set into the LLC and then flushing all of them with
CLFLUSH.

Step 2: We pick la from the eviction set, where 0≤ a≤w−1.
Then, we first load the cache lines before la in the
eviction set into the LLC (l0 to la−1, if a ̸= 0), and
then prefetch la. After the prefetch, we load the rest
of the cache lines until the LLC set is full (la+1
to lw−1, if a ̸= w−1). We add LFENCE after each
load/prefetch operation to ensure that the cache lines
are filled into the LLC in order.

Step 3: We load lw into the LLC which evicts one of the
existing cache lines in the target set.

Step 4: We load la and time the load to learn whether this
prefetched line was evicted in Step 3. If la was
evicted, it takes longer (typically more than 150
cycles) to load, otherwise it takes much shorter to
load (less than 100 cycles).

We run the above experiment with a changing from 0
to w− 1 and repeat the experiment 10000 times for each



value of a. The average load latencies in Step 4 are shown
in Figure 2: it always takes over 200 cycles to reload the
prefetched line (la), meaning la was always evicted from the
LLC in Step 3, regardless of its position in the set. This
proves that a prefetched cache line is easier to be evicted
than cache lines loaded into the LLC.

The above experiment indicates that a prefetched cache
line is distinctively inserted into the LLC, so that the
replacement policy will choose it to be evicted sooner than
other cache lines. We hypothesize two possible hardware-
level implementations to achieve this: 1) a prefetched cache
line is inserted into the LLC set with the age initialized to
be 3 instead of 2 (cf. Section II-B); 2) a prefetched cache
line is inserted into the LLC set with age 2 as normal, but
this line is flagged for “early eviction” in the LLC, i.e., a
prefetched line and a line with age 3 are treated unequally
by the replacement policy. As shown in Figure 3, we then
perform the following experiment to know which option has
more likely been chosen by Intel. In this experiment, we use
two eviction sets that are mapped to the same LLC set (l0
to lw and l′0 to l′w).

Step 1: Prepare the LLC set.

Step 2: Flush la and then prefetch la.

Step 3: Load l’1 to l’w-1 in order, find the evicted line after each load.

3...3l12l0 ... 3?la lw-1 33...3l12l0 ... 3?la lw-1 3

3...3l12l0 ... 33la lw-1 33...3l12l0 ... 33la lw-1 3

Eviction result

Loaded line Evicted line

l’1 l1

l’2 l2

l’a la

l’w-2 lw-2

l’w-1 lw-1

Figure 3. The experiment steps and results for learning the insertion policy
of PREFETCHNTA.

Step 1: We prepare the target LLC set as shown in Step 1
of Figure 3. This can be achieved by first filling the
set with lw and l1, l2,..., lw−1 in that order, and then
loading l0 to evict lw (cf. Section II-B).

Step 2: We flush la (1≤ a≤ w−1) and then prefetch la. It
is brought back to this flushed location.

Step 3: We load l′1 to l′w−1 into the LLC in order and check
which cache line in this set is evicted after loading
each of them.2

With each possible value of a, we run the experiment
10000 times. The eviction results in Step 3 are shown in

2Checking if a cache line is evicted can be done by loading it and timing
the load. Note that we should start over the experiment before checking the
next cache line to avoid the noise caused by the measurement.

The initial state.

2l12l0 lw-2 22... lw-1 3

lw-2 N/AN/A... lw-1 N/A

... N/A lw-1 N/A

L1

LLC

L2

Step 1: Evict lw-1 from the L1 and L2 cache.

Step 2: Prefetch lw-1.

2l12l0 lw-2 22... lw-1 ?

l'w-2 N/AN/A... l'w-1 N/A

... N/A l'w-1 N/A

L1

LLC

L2

Step 3: Load lw to evict one line from the LLC set.

Step 4: Load lw-1 and time the load.

Timing result

1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0
1 0 0

2 0 0

3 0 0
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Figure 4. The experiment steps and results for learning the updating policy
of PREFETCHNTA.

Figure 3. We get the same results in each trial regardless of
the value of a: when loading l′1 to l′w−1 into this LLC set, l1
to lw−1 are evicted in order (from the left to right in Figure 3).
This indicates that the prefetched cache line (la) is treated
equally as a cache line whose age is 3. Thus, we believe
that a prefetched cache line is inserted into the LLC set
with age 3 instead of being flagged for early eviction. This
experiment also verified the replacement policy introduced
in Section II-B.

Property #1: On an LLC miss, PREFETCHNTA inserts the
target cache line into the LLC with the age initialized as 3.

2) Updating Policy: In this section, we study the cache
behavior of PREFETCHNTA when the target cache line
is already in the LLC (but not in the private cache).
Specifically, we are interested in whether an LLC hit caused
by PREFETCHNTA updates the age of the target cache line
in the LLC like a load instruction (cf. Section II-B). In this
experiment, we need two eviction sets: one for the LLC (l0
to lw) and one for the L1 and L2 cache (l′0 to l′w); l′0 to l′w
are all mapped into the same L1/L2 set with l0 to lw, but
different LLC sets. Then, we prepare the target LLC set
as the initial state shown in Figure 4: the LLC set is filled
with l0 to lw−1; the ages of l0 to lw−2 are 2 but the age of
lw−1 is 3. Thus, lw−1 is the eviction candidate in the LLC
set. lw−1 may be also present in the L1/L2 cache. After the
preparation, we run the following four steps (as shown in
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Figure 5. The execution times of PREFETCHNTA when the target data is
the L1 cache, LLC, and DRAM.

Figure 4) to learn whether prefetching lw−1 updates its age
from 3 to 2:

Step 1: We access l′0 to l′w multiple times to ensure that lw−1
is no longer present in the L1 and L2 cache.3 This
step is necessary because if lw−1 is present in the L1
or L2 cache, when prefetching lw−1, the request will
not reach the LLC and we cannot learn the updating
policy in the LLC.

Step 2: We prefetch lw−1. This results in an LLC hit and
may update the age of lw−1 in the LLC.

Step 3: We load a new cache line lw into the LLC which
evicts one of the existing lines in the LLC set.

Step 4: We access lw−1 and time the access to learn whether
it was evicted in Step 3: if lw−1 was not evicted, then
PREFETCHNTA updated its age in Step 2 (from 3
to 2), otherwise PREFETCHNTA did not update the
age in Step 2.

We repeat the above experiment 10000 times and Figure 4
shows a segment of the collected timing results (in Step 4).
It always takes over 200 cycles to load lw−1, meaning lw−1
was likely in DRAM before it’s loaded in Step 4. Thus, we
can safely conclude that PREFETCHNTA did not update its
age (from 3 to 2) so it was chosen by the replacement policy
and got evicted from the LLC in Step 3. Similarly, we have
verified that PREFETCHNTA does not update the age of a
cache line from 2 to 1, or 1 to 0 either, when hitting in the
LLC.

Property #2: On an LLC hit, PREFETCHNTA does not
update the age of the target cache line in the LLC.

3) Timing Variance: Prior work (e.g., [26], [32], [66],
[68]) has shown that the execution time of a regular load
instruction is related to the location of the target data in the
memory hierarchy. Here we analyze whether PREFETCHNTA
also has such timing variance. Specifically, we measure the
execution time of PREFETCHNTA in three scenarios where

3w+ 1 cache lines are enough to evict lw−1 from both the L1 and L2
cache because L1 Associativity+L2 Associativity < LLC Associativity on
our processors.

Algorithm 1: NTP+NTP Covert Channel
ds: the sender’s data (cache line) for transmitting signals
dr: the receiver’s data (cache line) for transmitting signals
message[n]: the n-bit long message to be transferred
Th0: the timing threshold for distinguishing prefetch hit and miss
———————————————————————————

Sender Algorithm
———————————————————————————
// Send 1 bit in each iteration.
for i = 0; i < n; i++ do

synchronization();
if message[i] == 1 then

Prefetch ds;
else

Do not prefetch;
end
wait_for_receiver();

end
———————————————————————————

Receiver Algorithm
———————————————————————————
// Detect 1 bit in each iteration.
for i = 0; i < n; i++ do

synchronization();
wait_for_sender();
Prefetch dr and time the prefetch;
if prefetch time> Th0 then

Received a bit “1”;
else

Received a bit “0”;
end

end

the target cache line (lt) is present in the L1 cache, not in
the L1/L2 cache but present in the LLC, and not cached at
all, respectively. The detailed operations for each scenario
are as follows:
Scen. 1: We load lt so that it is brought into the L1 cache;

then we prefetch lt and time the prefetch.
Scen. 2: We still load lt first, as done in Scen. 1. However,

before we prefetch lt and measure the timing, we
build set conflicts in the L1 and L2 cache to ensure
that lt is evicted from them.

Scen. 3: We first build set conflicts in the LLC to ensure
that lt is evicted from the entire cache hierarchy,
and then we time the prefetch on it.

We test each scenario 10000 times and a segment of the
collected timing results are shown in Figure 5. When the
target cache line is present in the L1 cache, it takes around
70 cycles to prefetch it; it takes 90 to 100 cycles to prefetch
when the cache line is only in the LLC, and over 200 cycles
when the cache line is not cached at all.

Property #3: The execution time of PREFETCHNTA is
related to the cache level of the target cache line.

IV. PREFETCH-BASED COVERT CHANNEL

Based on the properties of PREFETCHNTA that are reverse-
engineered in Section III, we build a new conflict-based cache



covert channel. In this section, we first introduce the threat
model, then discuss the details of this channel.

A. Threat Model

We use a similar threat model with previous conflict-based
cache covert channels (e.g., [32]). We assume that the two
essential parties for the channel, the sender and receiver are
two unprivileged processes running on the same processor
(but potentially different cores) with an inclusive LLC. We
also assume that the sender and receiver are able to construct
eviction sets for the LLC (e.g., using methods proposed in
prior work [32], [42], [43], [62]). In addition, the sender and
receiver should agree on the pre-defined channel protocols,
including the synchronization, data encoding, target LLC
set(s), and error correction protocols. Note that we do not
assume any shared data between the sender and receiver,
resulting in a more practical channel than channels relying
on data sharing (e.g., [10], [18], [22], [27], [67], [68]).

B. NTP+NTP

1) Channel Protocol: When prefetching a cache line into
the LLC, it replaces the current eviction candidate of the
LLC set. According to the replacement policy explained in
Section II-B, this eviction candidate is the first cache line in
the set whose age is 3. Since the prefetched cache line’s age
is also set as 3 (cf. Property #1), it now becomes the first
cache line in the set with age 3. This means that prefetching a
cache line into the LLC evicts the current eviction candidate
in the set, and then the prefetched cache line becomes the
new eviction candidate. With this knowledge, we can build a
covert channel where the sender and receiver communicate
by competing (or not) for one way in an LLC set (i.e., the
eviction candidate way). The sender and receiver can simply
achieve this by prefetching their own cache lines which
are mapped into the same LLC set. We name this covert
channel NTP+NTP (Non-Temporal Prefetch+Non-Temporal
Prefetch).
Basic channel protocol. In NTP+NTP, the sender and
receiver first need to ensure that the sender’s cache line ds
and the receiver’s cache line dr are mapped to the same LLC
set, as done in prior work [26], [32], [42]. Then, the receiver
prepares the channel by prefetching dr into the LLC.4 After
this, the sender and receiver can communicate following
Algorithm 1. One bit is transmitted in each iteration: the
sender sends “1” by prefetching ds into this target LLC
set, or sends “0” by not prefetching. After this, the receiver
receives the bit by prefetching dr and times the prefetch. If
the sender sends “1”, then dr should have been evicted from
the LLC (by ds); it takes longer for the receiver to prefetch.
In contrast, if the sender sends “0”, dr is still in the LLC so it

4We assume that the target set does not have empty ways which is true
for most cases. The receiver can also prepare an eviction set and load it
before the channel starts to ensure there is no empty way.

Initially the LLC set is in a random state.

The receiver prefetches dr to prepare the channel.

The sender prefetches ds to send “1” or stay idling to 

send “0”.

(a) bit = 1

(b) bit = 0

The receiver prefetches dr and times the prefetch to 

receive the bit.

(a) bit = 1

(b) bit = 0 3dr0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3ds0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3l20l12l0 lw-1 3......

Figure 6. How the state of the target LLC set changes during the NTP+NTP
covert channel.

is faster for the receiver to prefetch. The sender and receiver
can synchronize using the time stamp counters (TSCs).

The state change details in the target LLC set during the
covert channel are shown in Figure 6. Before the sender and
receiver start the covert channel, the target LLC set is in
a random state, i.e., it is filled with random cache lines in
random ages. When the receiver prefetches dr for channel
preparation, dr becomes the first (left-most) cache line in
the set with age 3, i.e., the eviction candidate. Thus, if now
the sender prefetches ds (to send “1”), it evicts dr and then
ds becomes the new eviction candidate since it is now the
first cache line with age 3. Therefore, when the receiver later
prefetches dr (for receiving the bit), it takes over 200 cycles
to finish the prefetch (cf. Property #3). This prefetch also
evicts ds and then dr is the eviction candidate again, i.e., this
LLC set is ready for transmitting the next bit. In contrast, if
the sender does not prefetch ds in this iteration (to send “0”),
then dr is not evicted. Later when the receiver prefetches dr,
it will get an LLC hit (or a private cache hit) which takes less
than 100 cycles. In addition, this prefetch does not update
the age of dr (cf. Property #2). Thus, dr is still the eviction
candidate and this LLC set is ready for the next iteration. In
summary, the receiver’s operation, prefetching dr and timing
the prefetch, is able to measure the bit from the sender in
the current iteration, as well as reset the state of the target
LLC set so that it is ready for transmitting the next bit.
Compared to Prime+Probe. Prior conflict-based covert
channels such as Prime+Probe and its variants [32], [42]
require the sender and receiver together access at least w+1
cache lines in each iteration to cause cache conflicts; w is
the set associativity of the LLC. For example, if the sender
sends a bit by loading (or not) a single cache line ds, in each
iteration the receiver needs to prime the target LLC set (by
accessing at least w cache lines) to evict ds and get ready for
the next iteration. This is because after the sender loads ds,
it may become the youngest cache line in the target LLC set.



To evict ds, the receiver needs to first access all other w−1
cache lines in the set to “refresh” their ages and make ds
the oldest cache line in the set. Then, the receiver accesses a
cache line that is not present in the LLC, causing set conflict
and thus evicting ds.

In NTP+NTP, the sender inserts ds into the target LLC set
as the oldest cache line. Thus, the receiver is able to evict it
using only one operation. Essentially, the sender and receiver
can use PREFETCHNTA to bypass the w-way associativity
of the LLC and use it as a one-way associative LLC. This
results in much more efficient LLC conflicts and thus a faster
covert channel.

ds0 Set 0

dr1 Set 1

Sender:

Receiver: Sender sends “1” (prefetches ds0)

dr0 Set 0

dr1 Set 1

Receiver:

Sender:

Receiver receives “1” (prefetches dr0)

Sender sends “0” (does not prefetch ds1)

ds0 Set 0

dr1 Set 1

Sender:

Receiver:

Receiver receives “0” (prefetches dr1)

Sender sends “1” (prefetches ds0)

dr0 Set 0

ds1 Set 1

Receiver:

Sender:

Receiver receives “1” (prefetches dr0)

Sender sends “1” (prefetches ds1)

dr0 Set 0

dr1 Set 1

Sender:

Receiver:

Receiver receives “1” (prefetches dr1)

Sender sends “0” (does not prefetch ds0)

T
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e
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T
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Sender: uses ds0 for Set 0, ds1 for Set 1.

Receiver: uses dr0 for Set 0, dr1 for Set 1.

T=0

T=1

T=2

T=3

T=4

Figure 7. The operations of the sender and receiver in each iteration of
NTP+NTP, when using two LLC sets; the receiver always detects the bit
sent in the last iteration instead of the current iteration.

2) Channel Capacity: We implement NTP+NTP and
Prime+Probe on two Intel processors (as listed in Table I) to
test their bandwidths. For Prime+Probe, we use the example
implementation discussed above: the sender accesses (or not)
one cache line, and the receiver primes with w cache lines.

Table II
THE MAXIMUM CHANNEL CAPACITIES OF NTP+NTP AND

PRIME+PROBE.

Platform Skylake Kaby Lake
NTP+NTP 302 KB/s 275 KB/s
Prime+Probe 86 KB/s 81 KB/s

The bandwidth of NTP+NTP is limited when using one
target LLC set: if the cache line in an LLC way is in-flight
(e.g., waiting for the memory response), this cache line cannot
be evicted regardless of its age. This means dr cannot evict
ds if ds is still in-flight when the prefetch request of dr
reaches the LLC. Thus, we need to space out the prefetches
from the sender and receiver (in each iteration). To avoid the
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Figure 8. The capacities and bit-error-rates of NTP+NTP and Prime+Probe.

slowdown caused by the spacing, we use two LLC sets in
NTP+NTP and let the sender and receiver access different
sets in each iteration. As shown in Figure 7, the receiver is
always detecting the bit that was sent one iteration earlier.
For fair comparison, we also use two sets in Prime+Probe.
However, we do not use the sets as in Figure 7 since it does
not benefit Prime+Probe much. Instead, we just use the two
sets to transfer two bits in each iteration.

We measure the channel capacities and bit error rates
of both channels, under different transmission intervals.
Although the raw transmission rate increases when decreasing
the transmission interval, the bit error rate may also increase,
especially when the interval is too short. To find the best
transmission rate, we use the channel capacity metric (as
in [39], [41]). This metric is computed by multiplying the
raw transmission rate with 1−H(e), where e is the bit error
rate and H is the binary entropy function. The results are
shown in Figure 8. The bit error rates of both channels stay
low (lower than 0.5% for NTP+NTP, 1.5% for Prime+Probe)
and are almost constant, when the raw transmission rate is
under a threshold (e.g., 304 KB/s for NTP+NTP in Figure 8
(a)). Thus, the channel capacity increases proportionally to
the raw transmission rate. It reaches the peak when the
raw transmission rate is around this threshold. Beyond this
threshold, the increasing error rate causes a decrease in the
channel capacity. The peak capacities of the two channels
are summarized in Table II.



3) Channel Reliability: Similar to prior conflict-based
covert channels, NTP+NTP is also affected by noise from
other processes accessing data mapped to the target LLC set.
For example, in a transmission iteration, although the victim
sends “0” by not prefetching ds, the receiver may receive “1”
if other processes access their data and evict dr, i.e., a false
positive occurs.

This problem can be solved by using a more reliable data
encoding method [26], [32], [35], rather than the very simple
method in Algorithm 1. For example, multiple LLC sets can
be used to send one bit. Note that the error caused by other
processes’ accesses in one attack iteration will not affect
the next iteration: once the receiver prefetches dr, dr is the
eviction candidate again. If other processes flush their data in
the target LLC set, it will create empty ways, which can also
impact the performance of NTP+NTP. However, CLFLUSH
is rarely used in daily applications [44], [63], [68], and this
problem can also be avoided by using a more reliable channel
encoding method.

V. PREFETCH-BASED SIDE CHANNEL ATTACKS

NTP+NTP introduced in the last section is unlikely a
side channel because the sender is transmitting the signal by
“prefetching (or not) a cache line”. In other words, the attacker
(receiver) can only detect the victim’s (sender’s) prefetch
patterns on a cache line, resulting in very limited attack
opportunities to normal applications. However, the properties
of PREFETCHNTA reverse-engineered in Section III make
it much easier for users to manipulate the replacement states
(ages) of cache lines in the LLC than before. Thus, attackers
can also use PREFETCHNTA to improve the existing cache
attacks that are based on cache replacement states, making
them more efficient and accurate. In this section, we use two
cache attacks that were proposed very recently as examples
to show how they can benefit from using PREFETCHNTA.

A. Prime+Scope with PREFETCHNTA

1) Prime+Scope: Prime+Scope [42] proposed in 2021 is
an LLC attack based on set conflicts. Prime+Scope is similar
to Prime+Probe, but it has much higher temporal resolution.
In each iteration of Prime+Scope, the attacker first primes the
target LLC set with a special pattern to ensure two things.
First, the target LLC set is occupied by the attacker’s cache
lines. Second, the current eviction candidate (a.k.a. the scope
line, ls) in the LLC set is also present in the attacker’s private
cache. Then, the attacker repeatedly accesses the scope line
and times the access to detect the victim’s access to her own
cache line (which is also mapped to this LLC set). When
the victim has not yet accessed her cache line in the current
iteration, the attacker’s accesses to ls always hit in the private
cache; once the victim accesses her cache line and brings it to
the LLC, ls is evicted and the attacker reaches an LLC miss.
Then, the current iteration ends; the attacker primes this set
again and moves to the next iteration. Note that the attacker

can repeatedly access ls without disturbing its replacement
state in the LLC and changing the eviction candidate. This
is because private cache hits do not update the replacement
state of the LLC copy.

Prime+Scope is an important attack because it has very
high temporal resolution. On our processors, loading a cache
line that is in the private cache and timing the load together
only take around 70 cycles. Thus, with Prime+Scope, the
attacker can locate the victim’s access in the time domain
with a granularity of 70 cycles. For example, the attacker
can know that the victim’s access happened when 70 <
current time < 140 or when 140 < current time < 210. In
comparison, the resolution of Prime+Probe is over 2000
cycles [42].

/ * e v s e t i s t h e e v i c t i o n s e t used f o r p r i m i n g
* /

/ * t h e scope l i n e add r i s i n e v s e t [ 0 ] * /
f o r ( i = 0 ; i < 3 ; i ++) {

f o r ( j = 0 ; j < 1 3 ; j +=4) {
memaccess ( ( vo id * ) e v s e t [ j + 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 1 ] ) ;
memaccess ( ( vo id * ) e v s e t [ 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 2 ] ) ;
memaccess ( ( vo id * ) e v s e t [ 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 3 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 1 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 2 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 3 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 0 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 1 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 2 ] ) ;
memaccess ( ( vo id * ) e v s e t [ j + 3 ] ) ;}}

Listing 1. The preparation step in Prime+Scope on our Skylake
processor.

There are two necessary conditions for building this high-
resolution attack. First, the attacker needs to know the eviction
candidate (ls) of the target LLC set after priming. Second,
ls needs to be present in the private cache after priming,
otherwise once the attacker accesses ls, it is no longer the
eviction candidate in the LLC. These two requirements make
the attack very challenging because they are intuitively
contradictory: being the eviction candidate means ls is
accessed less frequently than other cache lines; being present
in the private cache means ls is accessed more frequently
than other cache lines. To satisfy the requirements, the
original Prime+Scope uses very long and complicated access
sequences to manipulate the replacement states of both the
private cache and the LLC. The access sequence5 for our
Skylake processor is shown in Listing 1. It contains 192 cache
references in total. This long access sequence results in a slow

5This pattern is not optimal. For example, it could be more efficient with
knowing the details of the L1 replacement policy. Prime+Scope does not
assume that knowledge for generality.



2l12l02dt lw-2 22...

1) The attacker fills the set with dt and l0 to lw-2.

2) The attacker waits; the next state of the set depends on 

whether the victim accesses dt (a) or not (b).

2l12l01dt lw-2 22...(a)

2l12l02dt lw-2 22...(b)

3) The attacker loads lw-1 to cause set conflict. 

3l12lw-12dt lw-2 33...(a)

3l13l02lw-1 lw-2 33...
(b)

4) The attacker reloads dt and times the load. 

(a)

(b)

5) The attacker reverts the changes to the set.

3l12lw-11dt lw-2 33...

3l12dt2lw-1 lw-2 33...

Figure 9. Sequence of the LLC set states during Reload+Refresh.

preparation (priming) step. Thus, although Prime+Scope has
high temporal resolution in each attack iteration, it requires
a long preparation step between two consecutive iterations.
Therefore, the attacker may miss the victim’s accesses when
the victim is repeatedly accessing her cache line with a high
frequency, resulting in a high attack error rate.

2) Prime+Prefetch+Scope: The two key requirements in
Prime+Scope can be satisfied in a much easier way when
using PREFETCHNTA. As explained in Section IV-B, when
prefetching a cache line, it is installed in the LLC set as the
eviction candidate, and at the same time it is brought into the
L1 cache. Thus, the preparation step in Prime+Scope can be
done using the operations shown in Listing 2. We first prime
the LLC set by accessing the eviction set (consisting of w
cache lines without ls) several times, so that the victim’s
data in this set gets old and can be reliably evicted. Then
we prefetch ls to install it into the L1 cache, as well as the
LLC as the eviction candidate. Note that on tested processors,
priming the eviction set twice is enough for reliably evicting
the victim’s data (with over 99.99% probability). Thus, on
our Skylake processor, we only need 33 cache references
(compared to 192 in the original Prime+Scope), resulting in
a more efficient attack.

3) Faster Preparation Step: We test the total latency
of the preparation step in each attack iteration. For the
original Prime+Scope, to prepare the attack iteration, the
attacker primes the target LLC set with a long pattern
that takes a long period of time to finish. As shown in
Figure 11, the preparation takes on average 1906 cycles on
our Skylake processor (and 1762 on Kaby Lake). In contrast,
with PREFETCHNTA, although the attacker needs to first
prime the LLC set and then prefetch the scope line, the
priming pattern is much shorter. The entire preparation step
only takes 1043 cycles on the Skylake processor (and 1138

3l13l03dt lw-2 33...

1) The attacker prefetches dt and l0 to lw-2 into the LLC.

2) The attacker waits; the next state of the set depends on 

whether the victim accesses dt (a) or not (b).

3l13l02dt lw-2 33...(a)

3l13l03dt lw-2 33...(b)

3) The attacker prefetches lw-1 to cause set conflict. 

3l13lw-12dt lw-2 33...(a)

3l13l03lw-1 lw-2 33...
(b)

4) The attacker prefetches dt and times the prefetch. 

(a)

(b)

5) The attacker reverts the changes to the set.

3l13lw-12dt lw-2 33...

3l13l03dt lw-2 33...

Figure 10. Sequence of the LLC set states during Prefetch+Refresh.

on Kaby Lake).

/ * pr ime t h e e v i c t i o n s e t n t i m e s * /
f o r ( i = 0 ; i < n ; i ++)

f o r ( j = 1 ; j <= 1 6 ; j ++)
memaccess ( ( vo id * ) e v s e t [ j ] ) ;

/ * p r e f e t c h t h e scope l i n e a f t e r p r i m i n g * /
p r e f e t c h n t a ( ( vo id * ) e v s e t [ 0 ] ) ;

Listing 2. The preparation step in Prime+Prefetch+Scope on our
Skylake processor.

The faster preparation step can make Prime+Prefet-
ch+Scope more reliable and accurate than Prime+Scope. To
prove this, we use three threads (T1 and T2) pinned on two
different cores. T1 accesses a predetermined address every
1.5K cycles, as ground truth. T2 continuously monitors the
LLC set for events using one of the attacks. We consider it
a false negative if an event (from T1) is not detected. From
the experiments on our Skylake processor, the false negative
rate is about 50% for Prime+Scope. However, when using
Prime+Prefetch+Scope, this rate is reduced to less than 2%.

B. Reload+Refresh with PREFETCHNTA

1) Reload+Refresh: Reload+Refresh [10] is one of the
first attacks that leak the victim’s information by monitoring
the replacement state changes to the victim’s cache line.
Reload+Refresh is an LLC attack and it assumes shared data
between the attacker and victim. To learn the victim’s access
pattern on the shared cache line (dt), the attacker needs to
prepare an eviction set (l0 to lw−1) that is mapped to same
LLC set with dt . Each attack iteration in Reload+Refresh
consists of five steps, as shown in Figure 9. In Step 1, the
attacker fills the target LLC set with dt and l0 to lw−2 in
order. After this, all the cache lines in this set are in age 2.



Since dt is the first line in the set, it is the eviction candidate.
Then in Step 2, the attacker waits for the victim; if the
victim accesses dt , its age is updated to 1, and l0 becomes
the eviction candidate. Then in Step 3, the attacker forces
replacement in this set by loading lw−1. Either dt or l0 is
evicted depending on whether the victim accessed dt in Step
2. Then in Step 4, the attacker reloads dt and times the load
to learn whether it was evicted in the last step and infer
whether the victim accessed it in Step 2. Finally in Step 5,
the attacker reverts the changes in this set to prepare for the
next attack iteration. The attacker first flushes dt and lw−1
and then loads dt and l0 so that the states of dt and l0 are
reset. After this, the attacker accesses l1 to lw−2 in order, to
refresh their ages from 3 back to 2.
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Figure 11. The total latency of the preparation step, for Prime+Scope and
Prime+Prefetch+Scope.

Reload+Refresh is a powerful attack since it is much
stealthier (on the victim’s side) compared to prior LLC attacks
such as Flush+Reload [68]. However, similar to Prime+Scope,
many operations are needed in Reload+Refresh to reset the
LLC state (in Step 5). In Flush+Reload, after measuring the
victim’s behavior (by reloading the shared data), the attacker
only needs to flush this data to reset the state. In contrast, in
Reload+Refresh the attacker needs to perform two flushes,
two memory accesses, and w−2 serialized LLC accesses.
Due to these operations, the state reset step and the entire
attack iteration take very long to finish.

2) Prefetch+Refresh: We propose a new attack named
Prefetch+Refresh which works similar to Reload+Refresh
but with much less operations for resetting the state in each
iteration. As shown in Figure 10, this attack also consists of
five steps. In Step 1, the attacker prepares the target LLC set
similar to the one in Reload+Refresh; however, the attacker
initializes the age of each cache line to 3 instead of 2. Then
in Step 2, the attacker waits for the victim; if the victim
accesses dt , its age is changed from 3 to 2. Later in Step 3,
the attacker prefetches lw−1 (instead of loading it) to cause
conflict in this set. Then in Step 4, the attacker prefetches dt ,

as well as measures the prefetch latency to learn the victim’s
behavior in Step 2. Eventually in Step 5, the attacker reverts
the changes to this LLC set. If we compare the state of this
LLC set after Step 4 and the state in Step 1, only the two
left most lines are potentially changed: if the victim accessed
dt , now its age is 2 instead of 3, and the second cache line
from the left is lw−1 instead of l0. Thus, the attacker does
not need to access l1 to lw−2 to change their ages, as done
in Reload+Refresh. This results in a faster state reverting
step in Prefetch+Refresh.
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Figure 12. The total latency of the attacker’s operations in each attack
iteration, for Reload+Refresh and the two versions of Prefetch+Refresh.

We propose two options for the attacker to revert the
states of these two cache lines in Step 5. First, the attacker
can simply flush dt and lw−1 and then reload dt and l0 to
undo the state changes. In the second option, the attacker
still flushes and reloads dt . But she does not flush lw−1 and
reload l0, she instead uses l0 to cause set conflict (in Step
3) in the next attack iteration, if the victim accessed dt . In
other words, the attacker exchanges the roles of l0 and lw−1.
The second option makes Step 5 even faster compared to
the first option; however, it slightly increases the complexity
of the attack. The attacker needs to dynamically determine
the cache line to use in Step 3 in each iteration. Table III
shows the operations needed in Step 5 in Reload+Refresh
and the two versions of Prefetch+Refresh.

Table III
# OF OPERATIONS FOR REVERTING THE CACHE STATE WITH A 16-WAY

ASSOCIATIVE LLC.

Attack Method # of flushes # of DRAM
accesses

# of LLC
accesses

Reload+Refresh 2 2 14
Prefetch+Refresh v1 2 2 0
Prefetch+Refresh v2 1 1 0

3) Faster Attacks: We test the total latency of per-
forming all the attacker operations in each iteration. For
Reload+Refresh, the operations include loading lw−1 (to



cause conflict), reloading dt , flushing dt and lw−1, reloading
dt and l0, and accessing l1 to lw−2 (with pointer chasing). As
shown in Figure 12, the average latency of a Reload+Refresh
iteration (without the waiting window) is 1601 cycles on
our Skylake processor (and 1767 cycles on the Kaby Lake
processor). In contrast, when using Prefetch+Refresh (v1),
the attacker does not need to access l1 to lw−1, and thus the
average latency of an iteration is reduced to 1165 (and 1369)
cycles. In Prefetch+Refresh (v2), flushing lw−1 and reloading
l0 are eliminated and the average latency is only 873 (and
1054) cycles.

VI. DISCUSSION

A. Fast Eviction Set Construction

Conflict-based cache attacks such as Prime+Probe require
the attacker to build eviction sets: given a target address,
the attacker needs to find groups of addresses that are
mapped into the same set with it (i.e., congruent with it)
in the target cache such as the LLC. As mentioned in
Section IV-B, the properties of PREFETCHNTA allow us
to achieve one-way competition in an LLC set. As a result,
with PREFETCHNTA, set conflicts occur more frequently
than before when searching for congruent addresses. This
leads to a more efficient algorithm for constructing eviction
sets. Algorithm 2 shows our eviction set construction method.
It repeatedly measures the prefetch latency of the target cache
line lt , and before each measurement, it prefetches a new
candidate line lc (which is potentially congruent with lt ). If
the prefetched lc is congruent with lt , lt is evicted and later
it takes longer to prefetch it; then this lc is added to the
congruent address list. If the prefetched lc is not congruent
with lt , it takes shorter to prefetch and lt remains being the
eviction candidate in the set after the prefetch; the algorithm
then moves on to test the next candidate lc. The algorithm
keeps looking for congruent addresses until enough are found.

Algorithm 2: Eviction Set Construction
Input: lt, the target cache line for which an eviction set is desired
Output: EV, the eviction set

1 EV ←− an empty list
2 ev count ←− 0
3 while ev count< ev desired size do
4 prefetch lt
5 do
6 lc ←− a candidate line
7 prefetch lc
8 while prefetch lt is fast;
9 EV[ev count] ←− lc

10 ev count++
11 end

The state-of-the-art eviction set construction method [42]
uses a similar algorithm with ours. However, it accesses
lt and lc in each searching iteration instead of prefetching
them (in line 4, line 7, and line 8 of Algorithm 2). With

this approach, a congruent cache line can only be observed
(lt can be evicted) if about w congruent lines have been
tested/accessed since the last time lt was brought into the
LLC (in line 4), where w is the LLC associativity. This is
because when accessing lt (in line 4), it becomes the youngest
cache line in the LLC set which will not be evicted until about
w congruent cache lines are accessed (accessing EV between
line 4 and line 5 can slightly reduce this number). When lt
is finally evicted, we only know that the last accessed lc is
congruent with it. In contrast, when using PREFETCHNTA,
prefetching each congruent cache line can evict lt since lt
is installed as the eviction candidate, making the algorithm
much more efficient compared to the state-of-the-art. We test
the execution time of these two approaches, and the results
are shown in Figure 13.
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Figure 13. The execution time of the two algorithms.

B. PREFETCHNTA with Non-Inclusive LLCs

Most Intel server processors use non-inclusive LLCs. On
such processors, PREFETCHNTA brings data only to the L1
cache and the coherence directory, but not the LLC [1]. Thus,
the covert channel and side channel attacks discussed in this
paper cannot directly work on those processors. However, if
prefetched data are easier to be evicted from a set-associative
coherence directory than loaded data, it may be possible for
us to build fast set conflicts in the directory, resulting in a
directory version of NTP+NTP. Verifying this vulnerability
requires comprehensively understanding the replacement
policy of the directory. Unfortunately, the directory policy
has not yet been fully reverse engineered [42], [43], [66].
We leave it as future work.

Note that according to [3], on some AMD processors
prefetched data are placed into a software-invisible buffer
(instead of cache/directory). Therefore, it may be possible
to build conflicts using PREFETCHNTA in this buffer and
create a new covert channel.

C. Related Work

We have already introduced existing cache attacks in
Section II-C. In this section we discuss prior prefetch-based
side channel attacks.
Attacks based on software prefetch. Gruss et al. [17] found
that on Intel processors, the execution time of a prefetch



instruction, such as PREFETCHT0, leaks the translation
levels of inaccessible kernel addresses. Using this observation,
they built an attack to break Kernel Address Space Layout
Randomization (KASLR). They also observed that prefetch
instructions can bring inaccessible kernel data from DRAM
to cache, but recent work [51] has proved this incorrect;
their observation is actually the result of transient execution
caused by a Spectre gadget in Linux kernel, not the prefetch
instruction. Lipp et al. [29] later observed that on AMD
processors, the timing (and power consumption) of a prefetch
instruction on an inaccessible kernel address can leak the
translation level and TLB state of this address. They used
this to break KASLR as well as leak kernel memory data
on AMD processors.

Very recently, Guo et al. [22] found that on Intel processors,
PREFETCHW can be used to obtain the exclusive ownership
even on read-only data. Based on this, they proposed a new
cache eviction method and two new cross-core cache covert
channels, Prefetch+Reload and Prefetch+Prefetch. However,
both of their channels rely on the existence of shared data
(between the attacker and victim). Our NTP+NTP channel
does not have this requirement.
Attacks based on hardware prefetch. In 2018, Shin et
al. [52] attacked OpenSSL, leaking the private key by
leveraging the Intel stride prefetcher. Rohan et al. [46] later
reverse-engineered the stream prefetcher on Intel processors,
using it to build a covert channel.

D. Countermeasures

NTP+NTP uses a similar threat model with prior conflict-
based cache covert channels such as Prime+Probe. Thus,
countermeasures to mitigate conflict-based channels may also
defend NTP+NTP. This includes 1) isolation-based defenses
(e.g., [7], [15], [21], [31], [47]) which partition the cache so
that data from different security domains do not interfere with
each other, and 2) randomization-based defenses (e.g., [44],
[48], [57], [63]) which make it very hard (if not impossible)
to build set conflicts by modifying set index mapping.

In addition, a countermeasure for NTP+NTP specifically
is to change the LLC insertion policy for both prefetched
and loaded cache lines. For example, cache lines can be
loaded into the LLC with age 1 and prefetched into the LLC
with age 2. Then, a prefetched cache line is still evicted
sooner than a loaded cache line, but the prefetched cache
line is no longer guaranteed to be the eviction candidate in
the set. Thus, NTP+NTP can no longer work reliably. In
addition, with this modified policy, the speed of our eviction
set construction method (Algorithm 2) is significantly reduced.
We build Python models of both the original Intel LLC policy
and this modified policy, and simulate both our eviction set
construction method and the state-of-the-art [42] with these
two policies. With Intel LLC policy, our method requires
7.25× less memory references compared to the state-of-the-
art. In contrast, with the modified policy, this improvement

is reduced to 1.26×.
However, this countermeasure also weakens the perfor-

mance benefit of PREFETCHNTA. With the original Intel
LLC policy, prefetched cache lines can occupy at most one
way in an LLC set, ensuring that the upper bound of LLC
pollution is 1/w, where w is the associativity. This is no
longer guaranteed with the modified policy.

VII. CONCLUSION

In this paper, we first reverse-engineered the detailed cache
behaviors of PREFETCHNTA, the non-temporal data prefetch
instruction, on Intel processors. From the results, we found
that using PREFETCHNTA, two cache lines that are mapped
into the same LLC set can compete for the eviction candidate
way in the set, achieving cache conflicts without priming
the cache set for the first time. Based on this, we proposed
NTP+NTP, a conflict-based cache covert channel which has
much higher bandwidth compared to existing conflict-based
channels such as Prime+Probe. In addition, we showed how
PREFETCHNTA can be used in cache side channel attacks to
improve their performance. Finally, we demonstrated a new
LLC eviction set construction algorithm which is significantly
faster than the state-of-the-art.
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