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Abstract—Bit-flip based adversarial weight attack (BFA) has
become one of the most serious threats to Deep Neural Network
(DNN) security. By utilizing Rowhammer to flip the bits of DNN
weights stored in memory, the attacker can turn a functional
DNN into a random output generator. Previous works proposed
to retrain or reconstruct weights to make DNNs more robust
against BFA, e.g., the attacker may need to flip 10× more weights
now to make a DNN malfunction. However, these designs are only
weakening BFA instead of preventing it.

In this work, we propose ModelShield, a new defense mech-
anism against BFA, based on protecting the integrity of weights
using hash verification. If there exists a BFA-free environment,
ModelShield verifies the integrity of weights every time when
the DNN model is transferred into this environment; if not,
ModelShield performs real-time integrity verification. Since in-
tegrity verification can slow down a DNN inference by up to
7×, we further propose two optimizations for ModelShield. We
implement ModelShield as a lightweight software extension that
can be easily installed into popular DNN frameworks. We test
both the security and performance of ModelShield, and the
results show that it can effectively defend BFA with less than
2% performance overhead.

I. INTRODUCTION

Recently, deep neural networks (DNNs) based machine
learning (ML) algorithms have shown their great potential
in multiple fields, such as object recognition [1], [19] and
natural language processing [6], [10], enabling the develop-
ment of applications in critical domains including finance,
biology, and autonomous driving. Instead of investing in their
own DNN models, a lot of small companies and personal
users prefer to use Machine-Learning-as-a-Service (MLaaS)
platforms, where ML applications run on the cloud server and
can be accessed by remote users through certain interfaces.
MLaaS significantly reduces the effort and cost of developing
and maintaining ML applications locally. However, there is
usually more than one application running on the cloud server
at the same time, and the hardware resources on the server
are shared between the ML application and other co-running
applications. With this setup, the internal DNN model of an
ML application, which is typically stored in the main memory
of the server, can be modified by the co-located malicious
application (the attacker) indirectly, using Rowhammer [11].

Rowhammer is a security exploit that alters the 1-bit data
stored in a memory cell by repeatedly accessing cells in its
neighboring rows. Rowhammer allows an user to flip other
users’ data bits in memory even without write permission to

Fig. 1: The result of the attack: after flipping a bit of a weight
in memory, the classification output is changed from “cat” to
“dog”, given a picture of a cat as the input.

them. Previous works have shown that Rowhammer attacks
can successfully work on server memory devices [2], [7],
[34]. It has also been proved that an attacker can utilize
the Rowhammer attack to flip the bits of DNN weights and
significantly reduce the inference accuracy or even make the
DNN a random output generator [33], as shown in Figure 1.

Original bit-flip based adversarial weight attacks randomly
choose weights in a DNN model to flip their bits. Recently, a
new Bit-Flip Attack (BFA) [22], [24] was proposed where the
attacker efficiently identifies and flips only a small number of
most vulnerable bits in a DNN model. Several defense mecha-
nisms against BFA have been proposed, including binarization-
aware training [9], and quantization based weight reconstruc-
tion [14]. However, these methods are only making DNN
models more robust against BFA instead of strictly protecting
them from BFA. For example, according to [9], without any
defense, a BFA attacker only needs to modify 28 weights
in a ResNet-20 model to make it malfunction; in contrast,
with binarization-aware training, the attacker needs to modify
over 500 weights. However, modifying 500 weights out of
305,200 weights in ResNet-20 (0.2%) can be easily realized
using Rowhammer attacks, making the protected DNN still
vulnerable to BFA. Thus, there is still a lack of effective de-
fense mechanism for BFA. Although we can rely on hardware
defenses against all Rowhammer attacks, it usually takes a
long time to market any hardware modification, and sometimes
upgrading the cloud infrastructures is very expensive, leaving



the use of current MLaaS platforms still insecure.
Challenge. One way to prevent BFA is to protect the integrity
of DNN weights using hash verification. However, a naive hash
verification design could cause both security and performance
problems. First, using unkeyed hashes for verification may not
protect the model: the attacker could modify the hashes stored
in memory as well to ensure that they match the modified
weights. Thus, one may consider using a keyed hash and
keeping the key on chip instead of storing it in memory, similar
to SGX. However, this requires hardware-level modification,
which significantly complicates the protection. Second, to
avoid the time-of-check to time-of-use problem, we need to
perform real-time hash verifications. Unfortunately, this can
slow down the inference by up to 7×, making it an impractical
protection for MLaaS platforms.

In this work, we propose ModelShield, a lightweight de-
fense mechanism that can strictly prevent BFA by protecting
the integrity of DNN weights. ModelShield is implemented as
a software extension that can be simply added into modern
frameworks (e.g., Pytorch [21]). We overcome the mentioned
security and performance challenges by thoroughly analyzing
the strength of BFA and optimizing performance while main-
taining security based on the analysis. Specifically, we first
prove that a BFA attacker is not able to precisely modify the
hash to make it match the corrupted weight data, which gives
us a chance to protect DNN weights without a keyed hash
and hardware modification. Second, we summarize the critical
features of hashes for defending BFA and explore hashes that
not only have these features but also good performance. Third,
to further reduce the verification overhead, we build a hash tree
in software and find the tree structure that provides optimal
performance.

Since most DNN inferences are performed on GPUs, we
implement ModelShield in a CUDA kernel and build a script to
link this kernel with modern frameworks such as Pytorch. With
ModelShield, programmers can verify the integrity of weights
in one-line python code. We test ModelShield with popular
DNN models, and the experimental results show that using
ModelShield can successfully protect DNN models from BFA
with less than 2% performance overhead and zero accuracy
degradation. The kernel and the script will be released after
this paper is published.

II. BACKGROUND AND PRIOR WORKS

A. Rowhammer Attack

Modern DRAM-based memory chips consist of a two-
dimensional array of cells. Each cell stores 1-bit information,
represented by the charge of the capacitor in the cell. In
2014, it was found out that current DRAMs are vulnerable
to disturbance errors induced by adjacent row activation [11].
More specifically, activating a row in a DRAM bank can cause
a little disturbance in its neighboring row; with frequently
activating/accessing the same row (i.e. hammering the same
row), the disturbance on the neighboring row will accumulate
and eventually become significant enough to flip the stored
bits in this row, before it gets refreshed. With Rowhammer,

attackers are able to change the memory data of a co-located
application without even accessing it directly.

Rowhammer has already been successfully utilized to
demonstrate many attacks [2], [33], [34]. It has been proved
that Rowhammer attacks can work on both DDR3 and DDR4
memory, and even on Error-correcting code memory (ECC
memory) [3]. In addition, Fan et al. discovered that Rowham-
mer attacks can be used to modify the weights of a functional
DNN and make it a random output generator [33].

B. Bit-Flip based Adversarial Weight Attack

Adversarial weight attack is one of the main challenges
on DNN security: even small changes to weights can lead
to significant differences in inference accuracy [22]. The bit-
flip based adversarial weight attack (bit-flip attack for short) is
one of such adversarial attacks. This attack performs weight
modification by flipping the bits of DNN weights stored in
memory, utilizing well-developed Rowhammer tools.

The original bit-flip attack randomly selects weights in a
DNN as the target of error injection. However, this method
only works efficiently on floating-point DNN models. Quan-
tized models are very robust against it due to their fixed
precision: one bit-flip on the most significant exponent bit of
a random weight in a floating-point ResNet-18 can make it
totally malfunction on ImageNet; however, 100 bit-flips on
a quantized ResNet-18 only causes 0.6% accuracy degrada-
tion. Thus, Adnan et al. proposed a more efficient Bit-Flip
Attack [22] (aka. BFA), which focuses on compromising a
quantized DNN model with only several bit-flips.

Given an Nq-bit quantized DNN model with L convolu-
tional/linear layers, the main goal of BFA is to find the optimal
combination of weight bits in it to perform the attack and thus
maximize the inference loss of the perturbed DNN model. This
can be represented as an optimization problem:

max
{B̂l}

L
(
f(x; {B̂l}Ll=1

)
, t)− L

(
f(x; {Bl}Ll=1), t

)
s.t.

L∑
l=1

D(B̂l,Bl) ≤ Nε

(1)

where B is the bit-wise representation of the quantized weights
W, and B̂ is for the perturbed weights. x and t are the input
and the target output vectors, respectively. Given x as the
input, f(x; {B̂l}Ll=1) represents the inference output using the
DNN model with perturbed weights {B̂l}Ll=1. Additionally,
L(·, ·) computes the loss between the inference output and the
target output. D(·, ·) calculates the Hamming distance between
two binary tensors, and Nε ∈ N is the maximum Hamming
distance allowed in this DNN model.

BFA solves this problem using Progressive Bit Search (PBS)
which combines the gradient ranking and progressive search
to find the most vulnerable bits. PBS is a two-step algorithm
consisting of 1) in-layer search, and 2) cross-layer search. In
each attack iteration, PBS first searches in a certain layer
to identify bits with highest gradients (argmaxBl

|∇Bl
L|)

as vulnerable bits. This search is performed on each layer



independently. Then, PBS compares the selected vulnerable
bits from each layer and identifies the most vulnerable bits
across all layers by directly checking the loss increment.

C. Previous Defenses

Binarization-aware training: Zhezhi et al. made an important
observation that BFA is prone to identify vulnerable bits in
close-to-zero weights, and modify them to be large values [9].
Based on this observation, they proposed to use binarization-
aware training to defend against BFA. In this training method,
weights that are originally in floating point are converted to
be represented by a binary-based format; the method can be
mathematically described as:

Forward: wb
l,i = E(|Wfp

l |) · sgn(wfp
l,i)

Backward:
∂L
∂wb

l,i

=
∂L
∂wfp

l,i

(2)

in which wfp
l,i and wb

l,i denote the floating-point and binarized
weight, respectively, and sgn() is the sign function. With
this method, weights in each layer of the model can only
be ±E(|Wfp

l |), i.e. weights are far from zero. Thus, the
model becomes more robust against BFA. Note that since
using binarization-aware training can significantly decrease the
inference accuracy, the authors also proposed a relaxation to
the weight binarization which can help improve accuracy.
Weight reconstruction: As mentioned, when the attacker flips
a bit in a weight, it induces a change of ∆w on the target
weight, which will affect the loss. Thus, to defend BFA,
Jingtao et al. proposed weight reconstruction method which
can reduce the ∆w caused by a bit-flip and thus the overall
increase in loss [14]. This weight reconstruction consists of
three steps: 1) averaging, which can spread the effect of |∆w|
on a group of size G so that it only causes a small change
of |∆w/G| on the mean; 2) quantization, which can cancel
the effect of this |∆w/G| change on the quantized mean; 3)
clipping, which restricts all the weights to a small range around
the quantized mean.
Limitations of previous works: The discussed previous
defenses focus on modifying DNN models themselves to
make them more robust against BFA. However, this kind
of method can only weaken BFA, rather than preventing it.
As an example, without any defense mechanism, the BFA
attacker only needs to flip the most significant bits (MSBs) of
about 28 weights in a ResNet-20 model to make it generate
random outputs on CIFAR-10. In contrast, with binarization-
aware training, the attacker now needs to flip at least 500
MSBs. This defense mechanism significantly improves DNN
security; however, there are over 1MB weights in ResNet-20.
Although previous work reported that not all memory cells
are vulnerable to Rowhammer, it is still not difficult for the
attacker to find 500 weights with vulnerable MSBs, which is
less than 0.2% of the total weights. From this perspective,
previous defenses make weak assumptions on the attacker’s
strength and cannot strictly protect DNN models from BFA.

Note that defense methods targeting general fault-injection
attacks on DNN models can also be used to defend BFA, such
as [15]. However, they always come with high overhead.

III. THE DESIGN OF MODELSHIELD

A. Threat Model

We assume a white-box attacker similar with the ones in
previous works [9], [14]. The attacker’s goal is to make the
co-located DNN application malfunction (i.e. provide wrong
inference results) by performing BFA. To achieve this, the
attacker should have some knowledge of 1) the architecture,
weights, and other parameters of the target DNN model, and
2) the memory mapping mechanism of the MLaaS platform.
Thus, the attacker knows which weights of the DNN model
should be modified and how to modify them in memory via
Rowhammer. In addition, for a DNN application, the DNN
model is usually first loaded into CPU memory during initial-
ization, and later transferred into GPU memory to perform
inference. Therefore, we use two threat models based on
whether GPU memory is vulnerable to Rowhammer attacks. In
the current threat model, we assume that only CPU memory is
vulnerable to Rowhammer attacks and GPU memory is safe,
since Rowhammer attacks on GPU have not been discovered
yet. However, in case those attacks will be built in the future,
we also use a future threat model in which we assume
both CPU memory and GPU memory are vulnerable. We
propose two versions of ModelShield under these two threat
models. Detailed justification of these threat models are in
Section III-C and Section III-D.

In both threat models, we exclude Rowhammer attacks that
focus on attacking the code structure of DNN applications
to change the control flow or even cause a Denial-of-Service
(DOS) attack, since they are easier to detect and can be
defended by previous works [27].

B. Design Overview

Instead of rebuilding the DNN model to make it more robust
against BFA, in this work, we aim to propose a new method
that can detect and prevent any unauthorized modifications on
the weights of a DNN model. To practically protect DNN
models, this method should meet the following requirements:

1) Easy implementation. Rowhammer attacks can be elimi-
nated by hardware defenses. However, it is a long process
to test and verify hardware modifications before applying
them to commercial processors. In fact, recent memory
devices are even more vulnerable to Rowhammer attacks
than earlier devices [29]. Thus, if we aim to build a
defense method that is available for DNN customers im-
mediately, this design should not include any hardware-
level modification, i.e. it should be a simple software-
level design.

2) Compatible with current frameworks. Most DNN
models are trained and used in popular frameworks such
as Pytorch [21]. Thus, it is necessary to guarantee that
with this new software-level defense method, users are
still able to train/use their model in these frameworks.



Fig. 2: Pre-inference integrity verification mechanism; B′ means the weights stored in memory (potentially have been modified
by BFA), H means the stored hash values, and H′ means the re-calculated hash values over B′. DDR and GDDR are the
memory devices for CPU and GPU, respectively.

Fig. 3: Parallelizing hash verification in GPU by building a
2-level hash tree; each wavy line represents a GPU thread.

3) Negligible performance effect. The inference perfor-
mance directly affects the competitiveness of an MLaaS
platform. Thus, the proposed method should not introduce
a significant increase in the inference latency.

Based on these requirements, we propose ModelShield
which can defend BFA by verifying the integrity of weights.
ModelShield is a software extension that can be easily installed
into current frameworks such as Pytorch, and it is designed
to only have very little performance overhead (1%) on DNN
training/inference. In this section we explain how ModelShield
works under each threat model.

Note that in this section we only consider the most common
cases in which DNN inference is executed on GPU. Cases in
which the inference is finished on CPU or specialized DNN
accelerator will be discussed in Section V.

C. ModelShield under The Current Threat Model

As mentioned, our goal is to detect and prevent any weight
modifications caused by BFA, i.e. the integrity of weights
needs to be protected. Thus, we propose to verify the integrity
of weights every time after the DNN is transferred into a
BFA-free environment (pre-inference verification).

Due to their high calculation bandwidth, GPUs are widely
used for DNN inference. On an MLaaS platform, the service

host usually transfers the DNN model from CPU memory to
GPU memory before starting the inference service. Once the
inference starts, users can send their inputs to the platform
and the host will transfer the inputs also to GPU memory
to perform the inference on GPU. Fortunately, we have not
seen a successful Rowhammer attack targeting GPU memory,
and previous BFAs are all done in CPU memory [22], [33].
This is because Rowhammer attacks require the attacker
application to be co-running with the victim application on
the same computing device. This is naturally supported on
CPU, with the help of operating system. However, due to the
lack of operating system on GPU, it is very difficult (although
not impossible) to run two applications (aka. GPU kernels)
simultaneously on GPU [30]. In addition, in contrast to the
case on CPU, it is much harder to manipulate the cache on
GPU which is necessary for Rowhammer attacks. Therefore,
we consider GPU as a BFA-free environment. Thus, as long
as the DNN model’s integrity is verified every time when the
model enters this environment, we do not need to worry about
BFA while the model is kept in this environment.

A cryptographic hash function H() is an algorithm that
takes an input data with any size, and produces a fixed-size
output, called the hash value or the digest (e.g., SHA256 [18]
is a popular cryptographic hash that generates a 256-bit hash
value). Cryptographic hashes (hashes for short) are widely
used for protecting data integrity. Thus, here we use them
to defend against BFA. The defense algorithm (Figure 2) is
explained as follows:

Step 1: After a DNN model is trained, for each layer of the
model, calculate one hash value Hl over the weights in
this layer (Hl = H(Bl)), and store all the hash values
{Hl}Ll=1 together with the weights {Bl}Ll=1, as part
of the model. Then when the model is deployed to an
MLaaS platform, these hashes will also be deployed;

Step 2: During the initialization of inference service, after the
model is moved into the GPU memory, re-calculate
the hashes in GPU over the weights stored in GPU
memory, i.e. calculate H ′

l = H(B′
l) for each layer;

Step 3: Compare {H ′
l}Ll=1 with {Hl}Ll=1 to verify the integrity

of weights: if they are equal then B = B′, no BFA



occurred before this DNN model is transferred into
GPU memory; if they are different then B 6= B′, this
DNN model is compromised and we need to reload
the correct model from the disk storage and restart
from Step 2;

Step 4: Start the inference service on this platform. During
this service, if the model is never moved out of GPU,
we do not need to verify the integrity of weights
again1.

One natural question is that since the hash values are also
stored in memory, why can’t a “smart” BFA attacker modify
the hash values together with weights to ensure that they still
match after the attack. Theoretically, this is a security concern
for ModelShield; however, we argue that this is not feasible
in reality due to the following properties of cryptographic
hashes [25]:

1©Diffusion: hash values are guaranteed to be diffused, i.e.
even modifying one bit in the input can cause many bits to
change in the hash value;

2© Randomness: each hash value is expected to be random,
i.e. there are about same amount of “0” and “1” in it.

Due to these two properties, if the attacker wants to modify
the hash value to make it match the modified weights, he needs
to flip many bits of the hash value including both 1 → 0 and
0 → 1 flips. However, according to previous works [11], [32],
all the memory cells in the same row can only be flipped in
one certain direction (either 1 → 0 or 0 → 1). As a hash
value is typically smaller than one cache line, its bits are all
stored in one memory row. Thus, it is almost impossible for
the attacker to get the correct hash value by only performing
one-direction bit-flips to all the bits (e.g., for SHA256, the
attacker can succeed with the probability of 1/2127).

We implement this DNN integrity verification method in
a GPU kernel and build a script to link this kernel into
frameworks such as Pytorch. With this kernel, the integrity
of a DNN model can be easily verified with one-line python
code (for Requirement 1 & 2). Additionally, this verification
only needs to be done once (when the model is transferred
into GPU memory), then the model will be used to serve
many inferences. Thus, the overhead on inference latency is
negligible (for Requirement 3).

D. ModelShield under The Future Threat Model

The pre-inference verification design in Section III-C as-
sumes that GPU memory is BFA-free since we have not
seen Rowhammer attacks on GPU yet. However, as we
mentioned, it is not impossible to run two GPU kernels
simultaneously [17], [30]. Although this co-running is not
yet stable enough for building Rowhammer attacks on GPU,
maybe it will be in the future. Thus, GPU memory may
become vulnerable to BFA in the future. In that case, our
design will not be effective anymore because after the model’s
integrity is verified, the model can still be attacked by BFA

1This is true in most cases, in rare cases where the DNN model cannot fit
in GPU memory, the hash needs to be verified every time when a DNN layer
is transferred into GPU memory.

in GPU memory during the DNN inference, introducing a
time-of-check to time-of-use problem [31]. In this section we
modify ModelShield to further prevent the future BFA in GPU
memory, based on some important observations.
Observation 1 Rowhammer attacks can only flip the value of
a memory cell in one certain direction (1 → 0 or 0 → 1).

The root cause of Rowhammer is that repeatedly accessing
one row can cause the DRAM cells in the neighboring row
to leak charge. In a DRAM chip, there can be two types
of cells, including true-cells and anti-cells [32], depending
on the relationship between the voltage of the cell and the
represented logic values: a true-cell stores a logic value of
1 as the charged state, and 0 as the discharged state. Thus,
charge leaking caused by Rowhammer can only introduce 1
→ 0 bit-flips. In contrast, in anti-cells this relationship is in
the opposite direction, i.e. Rowhammer can only introduce 0
→ 1 bit-flips. As mentioned in Section III-C, cells in the same
row are always the same type.

According to this observation, once a BFA attacker modifies
a bit of a weight during the inference, he will not be able
to flip this bit back to pretend that it was never changed.
Thus, if GPU memory is not secure anymore, we can use
post-inference integrity verification to protect weights: we can
verify the integrity of weights every time after the inference
is done but before the inference result is sent to users; as long
as at this time the verification succeeds, it indicates that no
BFA happened during the inference.

This post-inference verification design is secure even when
GPU memory is corrupted. However, this design can introduce
significant overhead: if users are performing inference of one
input at a time, then we need to do a hash verification after
the inference of each single input. This can increase the total
execution latency by several times (as shown in Section IV).
To solve this problem, we further propose two optimizations.
Observation 2 Non-cryptographic hash functions can also be
used for defending BFA.

In contrast to non-cryptographic hash functions, crypto-
graphic hash functions are able to strictly protect data in-
tegrity, and thus can definitely be used to prevent BFA. In
cryptography, strict integrity protection requires/indicates that
the generated hash value has the property of diffusion and
randomness. As explained in Section III-C, these properties
are needed for defending BFA. However, integrity protection
also indicates the guarantee of collision resistance, i.e. it is
computationally infeasible to find two inputs that have the
same hash value. However, this property is not necessary for
defending BFA, due to the limited ability of Rowhammer
attacks: even if the attacker finds two inputs that collide, he is
not able to modify the weights accurately to have the colliding
values as those two values are likely to be very different.
Optimization 1 Use high-performance non-cryptographic
hash functions to defend BFA.

As mentioned, we do not necessarily need a cryptographic
hash function for defending BFA. We instead only need a
hash function with the property of diffusion and randomness.



This requirement can actually be satisfied by some non-
cryptographic hash functions such as xxHash [4]. Most cryp-
tographic hash algorithms are much more complicated than
non-cryptographic hashes, and thus have worse performance.
For example, Merkle–Damgård construction based crypto-
graphic hashes are known to have extremely long calculation
latency [5]. Thus, we instead use non-cryptographic hashes
that are highly optimized, such as xxHash. In Section IV, we
will show that using xxHash introduces much less overhead
compared to using SHA256.
Optimization 2 Build a hash tree to fully utilize the calcula-
tion resource in GPU.

The nature of hash function is to compress an arbitrary-size
input data to a fixed-size output. A longer input usually renders
longer hash calculation latency, as it requires more iterations
of compression (Figure 4). For example, with defining the
output length of the hash function as a block, the hash
calculation latency with a 3-block input can be about two
times of the latency with a 2-block input. This is because
the former requires two iterations of compression and the
latter only needs one. GPU consists of many computation
threads that can work simultaneously. Thus, the hash values of
different DNN layers can be generated in parallel, since they
are independent. However, the calculation of a certain hash
value is not parallelizable because compressions have to be
done sequentially; if a layer in the DNN model is very large,
it can result in long total hash calculation latency.

Thus, to reduce the hash calculation overhead, we build a
small hash tree (for each DNN layer) which can fully utilize
the calculation ability of GPU threads to parallelize the hash
calculation: for all the weights in a layer (B′

l), we first divide
them into several chunks ({B′

l,i}Ii=1) 1©; then we calculate
the hash of each chunk (H ′

l,i) simultaneously using different
threads in GPU 2©; after this is done, we concatenate the
outputs in 2© and get H ′

l,1||H ′
l,2||...||H ′

l,I . Then we calculate
the hash of this concatenated result as the final hash of this
layer (H ′

l ) 3©, as shown in Figure 3. Note that the stored hash
values {Hl}Ll=1 (generated before the DNN model is deployed)
need to be calculated the same way.

Note that we cannot use too many chunks in 1©, i.e. I cannot
be too large a number. In the extreme case, if each chunk is
1-block long, there will be no compression in 2©, and after
2© the output size is same with the input. Then in 3© we still

need to do a long calculation/compression. Thus, the problem
is how many chunks should we have in 1© to reach the best
performance, i.e. for an n-block input, if the latency of hashing
n-block to 1-block is about (n−1)·t, what is the chunk number
c that makes the total latency shown as follows the minimum:

Lhash = (n/c− 1) · t︸ ︷︷ ︸
Lhash1

+ (c− 1) · t︸ ︷︷ ︸
Lhash2

(3)

Note that Lhash is the total latency, and Lhash1 and Lhash2
are the hash latencies in 2© and 3©, respectively. By solving
this math problem, we know that when c =

√
n, Lhash reaches

the minimum. Thus, for each layer of weights, we divide them

into
√
n chunks first, and use a 2-level hash tree to reduce the

calculation latency2.

E. The Protection of ModelShield

A natural concern on ModelShield is that the attacker might
be able to modify the control flow of the hash verification
code via Rowhammer to modify or even bypass the verification
process. Although protecting code integrity is out of our threat
model, we argue that the implementation of ModelShield
makes it very difficult (if not impossible) for the attacker to
achieve this.

First, the hash verification is implemented as a standalone
GPU kernel. There is no control flow to decide whether or not
to verify; as long as ModelShield is used, the compiled kernel
will be linked into the DNN application’s address space, and
the hash verification calculation will be executed.

Second, the hash calculation does not have control flow.
Although at the end of the calculation, we must check if the
calculated hash is equal to the expected hash, this can be
done in a branchless manner using general compiler techniques
to eliminate branching. An example implementation is as
follows:
Step 1: XOR the calculated hash with the expected hash, store

in Register S.
Step 2: OR all the bits in Register S together (this can be done

branchlessly in log2(hash size)), store in Register T.
Step 3: Use Register T to raise a cuda exception (e.g., as-

sert(NOT(T)). This throws a cudaError if the input
is 0 (i.e. the hash is mismatched), and terminates
the DNN application. After this, the system manager
will relaunch this application to reload the model and
weights from disk.

IV. EVALUATION

In this section, we analyze the security and performance
of ModelShield. In the experiments, we use two baselines
including 1) the insecure baseline, in which there is no pro-
tection against BFA, and 2) the discussed binarization aware
training mechanism (BAT). We choose BAT because it is more
effective than weight reconstruction. We implement BAT using
the public BAT source code in [23].

A. Experiment Setup

Datasets: We focus on the most widely used visual datasets
CIFAR-10 [12] and ImageNet [13]. CIFAR-10 contains 60K
32×32 RGB images that are evenly distributed in 10 classes.
In the experiments, we use 50K images for training the DNN
model, and the remaining 10K for testing it. ImageNet contains
1.2M training images divided into 1000 distinct classes.
Networks: We use CIFAR-10 to test VGG-11 [28] and
ResNet-20 [8], and use ImageNet to test MobileNetV2 [26].
VGG-11 is a deep sequential model; ResNet-20 and Mo-
bileNetV2 are non-sequential models where some layers take

2The performance can be further optimized using a deeper hash tree;
however, from the experimental results we found that a 2-level tree is good
enough.



TABLE I: The inference latency (given one input image), and the verification latency when using different hash functions and
setups; each (%) represents the corresponding overhead on inference latency.

Max # of weights
in a layer Inference latency (ms) Verification latency (ms)

SHA256
Verification latency (ms)

xxHash
Verification latency (ms)

xxHash+Tree
ResNet-20 36,864 17.10 28.72 (167.95%) 0.92 (5.38%) 0.02 (0.12%)
MobileNet 1,280,000 19.51 74.29 (380.08%) 12.52 (64.17%) 0.19 (0.10%)
VGG-11 2,359,296 21.03 164.20 (780.79%) 22.12 (105.18%) 0.37 (1.76%)

Fig. 4: The internal architecture of Merkle–Damgård construc-
tion based cryptographic hashes.

multiple inputs from other layers. We use 8-bit quantization-
aware training in all the experiments.
BFA configuration: We test the security of previous works
and ModelShield against BFA, using the BFA public code-
base [23] (commit: 6ad210c). We use the same attack setup
with the one in [22]. For each DNN model, we randomly select
256 input images from the validation set, and use those images
to perform BFA and collect the decline of accuracy.
Hardware platform: All the experiments are conducted using
Pytorch, running on the platform with an AMD Ryzen 3900XT
CPU and an NVIDIA 1080TI GPU.

B. ModelShield Implementation

Hash functions: We evaluate ModelShield with two hash
functions, including 1) SHA256 [18], one of the most widely-
used cryptographic hash functions with a 256-bit output hash
value; 2) xxHash, a high-speed non-cryptographic hash func-
tion with excellent diffusion and randomness [4]. We use the
64-bit version of xxHash which gives a 64-bit hash value.
Software implementation: We implement ModelShield in
a stand-alone GPU kernel, using CUDA toolkit 10.2 [20].
This toolkit is supported by most frameworks (e.g., Pytorch,
TensorFlow). We also write a script to link this CUDA kernel
to those frameworks. With this script, users do not need to re-
compile the whole framework to support ModelShield. Instead,
they can just run the provided script to install ModelShield as
an extension to their local framework.

C. Security Analysis
We run BFA to test the security of ModelShield, BAT, and

the insecure baseline. As shown in Figure 5, in the insecure
baseline without any defense against BFA, 50 bit-flips are
enough to compromise a DNN model and convert it into a
random output generator (when the accuracy is no more than
10% for CIFAR-10, and 0.1% for ImageNet).

BAT makes a major breakthrough on defending BFA: com-
paring with the insecure baseline, using BAT makes DNN
models much more robust against BFA; less than 20 bit-flips
can barely decrease accuracy. However, it is also shown in
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Fig. 5: The BFA result on ResNet-20, VGG-11, and Mo-
bileNetV2 with different defense mechanisms. Regions in
shadow indicate the error band w.r.t 10 trials.

Figure 5 that, when the number of bit-flips is higher than a
certain threshold (about 20 for ResNet-20, 60 for VGG-11,
and 30 for MobileNetV2), the accuracy starts to drop very
fast with the increase in the number of bit-flips, making the
DNN still vulnerable to BFA. Note that our results are slightly
different than the results reported in [9].

In contrast, ModelShield is able to detect any bit-flip, and
reload the correct model parameters if necessary. Thus, the
weights used during the inference are guaranteed to be the
unmodified weights, and BFA does not decrease accuracy
when using ModelShield.



D. Performance Analysis

Although BAT has relatively weak security protection on
DNN models, it does not increase the inference latency. In
contrast, ModelShield (under the future threat model) may
cause some inference overhead. In this section, we show that
this overhead is in fact negligible.
Performance overhead on ResNet-20: ResNet-20 is a rel-
atively small model. As shown in Table I, given one input
image, the inference latency on GPU is about 17.10 ms. Using
SHA256 to verify the integrity of all the weights will take
about 28.72 ms: this is not a significant overhead for pre-
inference verification mechanism as it only happens once when
the model is transferred into GPU memory. However, for post-
inference verification, this latency is added on each inference,
which can introduce 167.95% overhead. Instead, using xxHash
can reduce this overhead to 5.8%, and building a 2-level hash
tree can further reduce it to only 0.12%.
Performance overhead on MobileNetV2 and VGG-11:
Comparing with ResNet-20, MobileNetV2 and VGG-11 are
much larger models. As mentioned, the size of the largest
layer in a model decides the total latency of hash verifications.
From Table I, the largest layer of MobileNetV2 and VGG-11
contains 35× and 65× as many weights as the largest layer of
ResNet-20, respectively. Thus, hash verifications can generate
significant overhead in post-inference verification mechanism:
using SHA256 can cause 380.08% and 780.79% overhead on
MobileNetV2 and VGG-11, respectively. Even when using
xxHash, the overhead can still be 64.17% and 105.18%.
These large overheads come from sequentially compressing
the weights many times. Therefore, using a hash tree to
parallelize this process can significantly reduce the overhead,
to only 0.10% and 1.76%, which can be considered negligible.

V. DISCUSSION

Security of DNN inference on CPU/accelerator: Some
simple DNN inferences can be directly executed on CPU. In
this situation, mature CPU memory integrity protection tech-
nologies such as Intel SGX [16] can be used to protect DNN
weights. When running DNN inferences on CPUs without the
support of such technologies or on DNN accelerators, our post-
inference verification mechanism can be slightly modified and
used on these platforms.
The effect of implicit memory swap: The runtimes of
current DNN frameworks do not implicitly transfer data be-
tween CPU and GPU memory. Therefore, ModelShield can
be implemented in a standalone GPU kernel. In the future if
frameworks start to handle data movement, we will implement
ModelShield inside the back-end of each framework to guaran-
tee that data transfer always comes with integrity verification.
The effect of using multiple GPUs: Server platforms usually
have multiple GPUs available for users. If a DNN model
is split into pieces and transferred to multiple GPUs for
inference, we can modify ModelShield to verify the integrity
of the corresponding piece on each GPU independently.

VI. CONCLUSION

In this work, we proposed to use hashes to protect the
integrity of DNN weights, and thus defend BFA. We im-
plemented this method in a software extension named Mod-
elShield, and explained the details of ModelShield under the
current threat model and under the future threat model in
which BFA becomes more powerful. We also designed two
optimizations to ensure that ModelShield does not generate un-
feasible inference overhead. Finally, our experimental results
show that ModelShield can effectively protect DNN models
from BFA as well as maintain low inference latency.
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